A model of muscle-tendon function in the human walking
Keywords:
Muscle-tendon function, Walking, ElasticityAbstract
The goal of this study is to model the muscle-tendon function as observed in the human walking. The muscle-tendon units dorsiflex the ankle, flex and extend the knee and also accelerate the joint motions. A spring model is proposed to describe the action of a unit muscle-tendon in a gait cycle of human walking. The role of the elasticity in the muscle-tendon unit activity is taken over by the set of the springs in the network model.
References
ENDO, K., HERR, H., A model of muscle-tendon function in human walking at self-selected speed, IEEE Trans. Neural Syst. Rehabil. Eng., 22, 2, pp. 352–362, 2014; doi:10.1109/TNSRE.2013.2291903
TORRICELLI, D., GONZALEZ, J., WECKX, M., JIMÉNEZ-FABIÁN, R., VANDERBORGHT, B., SARTORI, M., DOSEN, S., FARINA, D., LEFEBER, D., PONSs, J.L., Human-like compliant locomotion: state of the art of robotic implementations, Bioinspir. Biomim., 11, 5, 051002, 2016; doi:10.1088/1748-3190/11/5/051002.
KRISHNASWAMY, P., BROWN, E., HERR, H.M., Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking, PLoS Comput Biol., 7, 3; DOI.ORG/10.1371/JOURNAL.PCBI.1001107, 2011.
MOSNEGUTU, V., On the modeling of the human knee joint, Revue Roumaine des Sciences Techniques, serie de Mecanique Appliquee, 53, 2, pp. 227–232, 2008.
BAECHLE, T., EARLE, R., Essentials of Strength Training and Conditioning, USA National Strength and Conditioning Association, 2008.
GATT, R., VELLA WOOD, M., GATT, A., ZARB, F., FORMOSA, C., AZZOPARDI, K.M., CASHA, A., AGIUS, T.P., SCHEMBRI-WISMAYER, P., ATTARD, L., CHOCKALINGAM, N., GRIMA, J.N., Negative Poisson's ratios in tendons: An unexpected mechanical response, Acta Biomater., 24, pp. 201–208, 2015; https://doi.org/10.1016/j.actbio.2015.06.018.
SCREEN, H.R.C., TANNER, K.E., Structure and Biomechanics of Biological Composites, In: Encyclopaedia of Composites, 2nd Ed., Nicolais & Borzacchiello. Pub. John Wiley & Sons, Inc., 2928-2939, 2012; https://doi.org/10.1002/9781118097298.weoc015.
QIAO, M., ABBAS, J.J., JINDRICH, D.L., A model for differential leg joint function during human running, Bioinspir. and Biomim., 12, 1, 2017.
ANDERSON, F.C., PANDY, M.G., A dynamic optimization solution for vertical jumping in three dimensions, Computer Methods in Biomechanics and Biomedical Engineering, 2, 3, pp. 201–231, 1999; doi:10.1080/10255849908907988.
ANDERSON, F.C., PANDY, M.G., Dynamic optimization of human walking, Journal of Biomechanical Engineering, 123, 5, pp. 381–390, 2001; https://doi.org/10.1115/1.1392310.
SCHUBERT, F., PEIFFER, A., KOEHLER, B., SANDERSON, T., The Elastodynamic Finite Integration Technique for Waves in Cylindrical Geometries (CEFIT), J. Acoust. Soc. Am. 104, 5, 1998; https://doi.org/10.1121/1.423844.
DELSANTO, P.P., WHITCOMBE, T., CHASKELIS, H.H., MIGNOGNA, R.B., Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case, Wave Motion, 16, 1, pp. 65
DELSANTO, P.P., SCHECHTER, R.S., CHASKELIS, H.H., MIGNOGNA, R.B., KLINE, R., Connection machine simulation of ultrasonic wave propagation in materials. II: the two dimensional case, Wave Motion, 20, 4, pp. 295-314, 1994; https://doi.org/10.1016/0165-2125(94)90016-7.
GOJKOVIC, Z., IVANCEVIC, T., Control of the Extension-Flexion Cycle of Human Knees During Bicycle Riding by a Synergy of Solitary Muscular Excitations and Contractions, Nonlinear Dynamics, 86, 3, pp. 2071-2080, 2016.
GOJKOVIC, Z., IVANCEVIC, T., JOVANOVIC, B., A two-phase computational biomechanics model for successful rehabilitation after hip and knee surgery, Nonlinear Dynamics, 90, 3, pp. 2047-2057, 2017; DOI:10.1007/s11071-017-3781-x.
GOJKOVIC, Z., IVANCEVIC, T., JOVANOVIC, B., Biomechanical model of swimming rehabilitation after hip and knee surgery, Journal of Biomechanics, 94, pp. 165-169, 2019; https://doi.org/10.1016/j.jbiomech.2019.07.035.
IVANCEVIC, T., JOVANOVIC, B., GOJKOVIC, Z., Comprehensive Review of the Universal Jolt Mechanism Theory for Musculoskeletal Injuries, in L'Hocine Yahia (Ed.), Ligament Reconstructions (Chap. 12), World Scientific, Singapore, 2019.
WINTER, D., Biomechanical motor patterns in normal walking, J. Motor Behav., 15, 4, pp. 302–330, 1983; https://doi.org/10.1080/00222895.1983.10735302.
HERR, H., POPOVIC, M., Angular momentum in human walking, J. Exp. Biol., 211, pp. 467–481, 2008; doi:10.1242/jeb.008573.
GÜNTHER, M., RUDER, H., Synthesis of two-dimensional human walking: A test of the model, Biol. Cybern., 89, pp. 89–106, 2003.
MOSNEGUTU, V., CHIROIU, V., Introducere in modelarea matematica a articulatiei genunchiului, Editura Academiei, 2013.
MOSNEGUTU, V., CHIROIU, V., On the dynamics of systems with friction, Proceeding of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, 11, 1, pp. 63-68, 2010.
FELLINGER, P., MARKLEIN, R., LANGENBERG, K.J., KLAHOLZ, S., Numerical modeling of elastic wave propagation and scattering with EFIT - elastodynamic finite integration technique, Wave Motion, 21, 1, pp. 47-66, 1995; https://doi.org/10.1016/0165-2125(94)00040-C.
ISHIKAWA, M., KOMI, P.V., GREY, M.J., LEPOLA, V., BRUGGEMANN, G.P., Muscletendon interaction and elastic energy usage in human walking, Journal of Applied Physiology, 99, 2, pp. 603–608, 2005; https://doi.org/10.1152/japplphysiol.00189.2005.
Published
Issue
Section
Copyright (c) 2021 The Romanian Journal of Technical Sciences. Applied Mechanics.
This work is licensed under a Creative Commons Attribution 4.0 International License.