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PERFORMANCE COMPARISON OF OPTIMIZATION 
ALGORITHMS FOR THE DESIGN OF ROBOTS 

ANISIA NEAMTIU1, VETURIA CHIROIU2, CATALIN BOANTA3, CORNEL BRISAN4 

Abstract. The design of robots is a complex task, that requires to identify the most 
suitable architecture of a robot that satisfies specific criterions. In such cases, 
optimization methods are used in order to identify the optimal values of certain 
parameters that describe the architecture of a robot that satisfies the criterions or lead 
to high kinematic, static or dynamic performance. The optimization methods are 
implemented using several optimization algorithms, that have to be chosen according 
to the type of the involved parameters, the cost functions and the imposed constraints. 
The results of an optimization are influenced by the type of the implemented 
algorithm, regardless of its type. This is why, for the same optimization problems, two 
or more algorithms may achieve different results and require different computational 
time and resources. Consequently, the problem addressed in this paper is represented 
by the comparison of several optimization algorithms, in order to identify their degree 
of efficiency and efficacy for optimization of robots, taking into considerations 
different performance criterions. 

Key words: optimization, algorithm, methods, performance, comparison, robot, 
efficiency, efficacy. 

1. INTRODUCTION 

Optimization represents the action of identifying the best result or the result 
that fulfills certain criterions of a specific problem. This action may be realized 
based on a previous experience of a human designer or may be implemented as a 
mathematical function, being necessary to identify the optimal solutions.  

The first mathematical optimization methods have been proposed by Newton, 
who has developed iterative methods to identify the optimal solutions. Later on, 
Lagrange and Fermat have developed calculus-based methods. 
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During the industrial revolutions, the demand of optimization methods has 
emerged, due to the need of development of new technical equipment and the 
necessity of increasing the performance of the already developed ones. 

Still, the growth of the computational power from the last three decades has 
led to a real interest in implementation of optimization algorithms. Therefore, 
nowadays, optimization algorithms are used in order to identify optimal solutions 
of real problems, being applied in mechanical or electrical engineering, economics, 
robotics and genetics (the applications are not limited to these domains).  

With regard to the design of robots, optimization is used to identify the optimal 
values of certain parameters that describe the architecture of a robot that satisfies 
certain criterions or lead to high performance regarding the kinematics, statics or 
dynamics. Optimization methods are implemented using different algorithms, that 
have to correspond to the type of the parameters, the cost functions and the imposed 
constraints. Due to the high complexity of the functions that describe the architecture 
of a robot, most of the used algorithms are stochastic, that involve probabilistic data 
in order to achieve the optimal solutions. The results of an optimization are 
influenced by the type of the implemented algorithm, regardless of its type. This is 
why, for the same optimization problems, two or more algorithms may achieve 
different results and require different computational time and resources. Based on 
these aspects, the scientific problem addressed in this paper is represented by the 
comparison of several optimization algorithms, in order to identify their degree of 
efficiency and efficacy for optimization of robots, taking into considerations different 
performance criterions. The algorithms are compared both regarding their ability of 
reaching an optimal value and the required computational time. The paper is 
structured as follows: the Chapter 2 and the Chapter 3 illustrate the literature review 
of using the optimization and the optimization algorithms in robotics, the Chapter 4 
presents the problem formulation, the Chapter 5 and the Chapter 6 illustrate the 
algorithm comparison setup and the corresponding numerical results and the Chapter 
7 summarizes the paper and presents the conclusions.  

2. OPTIMIZATION IN ROBOTICS – GENERAL ASPECTS  

Optimization may be defined as the process of identifying of the best result of 
a specific problem, taking into consideration several constraints, conditions of 
circumstances that have to be respected. From an engineering point of view, this 
aspect implies the transformation of a real problem in a mathematical function of 
one or more variables, that has to be minimized or maximized with respect to the 
constraints imposed by a human designer or by the problem that is optimized.  

An optimization problem may be represented as follows. Find a vector x  

( )1 2, , , nx x x x= … , (1) 
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that satisfies the minimum or maximum condition of a function 

( )f f x= , (2) 

taking into consideration a number of m  inequalities and p  equalities constraints 

( )
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0
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g x

k x
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=
, (3) 

where 1i m= …  and 1j p= … .  
In the above equations, x  is called a design vector, f is the cost function 

(also called objective or fitness function), ( )ig x  represent the inequality 
constraints and ( )jk x  represent the equality constraints. An optimization may or 
not include constraints (also called restrictions) and may include more than one 
objective functions (in which case, the optimization is called multi-objective).  

Depending on the application, the optimization methods may be classified in 
continuous or discrete, constrained or unconstrained, global or local, linear or 
nonlinear, single or multi-objective and stochastic or deterministic. More on the 
classification of the optimization methods may be found in [1‒5].  

In any robotic industrial application, the robots have to fulfill several specific 
criterions based on the requirements imposed by the application they are used for. 
This means that a robot has to respect some performance factors regarding the 
kinematic, static or dynamic behavior. In order to fulfill those factors, the 
architecture of the robot has to be designed using optimization methods.  

According to [6], in robotics, regardless of the complexity of the performance 
factors, an optimization method is based on the following steps: 

– The identification of the design variables, of the constraints and performance 
indices imposed by the application; 

– The mathematical formulation of the performance indices; 
– The formulation of the optimization problem; 
– The implementation using an optimization algorithm, searching for the 

optimal solution and interpretation of the results. 
The design variables are the parameters that describe the architecture of a 

robot (number of elements, geometrical lengths, material, number of actuators), 
that influence the behavior of the robot given by specific performance indices. 
These indices are used in order to quantify the performance of the robot with 
regard to kinematics, or dynamics. In the following, some performance factors are 
presented.  

The workspace of a robot is one of the most common performance factors 
used for many applications, being defined by the locations/ positions (or the total 
volume) that may be reached by the end-effector. For a specific application, the 
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workspace has to be maximized or to be as close as possible to an imposed one 
[7‒12]. In [13] and [14] several types of workspaces are presented as: the constant 
orientation workspace, the orientation workspace, the reachable workspace, or the 
inclusive orientation workspace. 

With regard to the kinematics, the most common terms that measure the 
kinematics performance presented in the scientific literature are the dexterity, 
manipulability and isotropy are the most common ones.  

The dexterity describes the mobility of a robot within its workspace, defined 
by the number of directions the points within the workspace may be reached by the 
end effector of a robot. The orientation of the end-effector is described by the 
rotation matrix ( , , )R α β γ using roll, pitch and yaw angles , ,α β γ within the range 
(0,2 )π [15]. The dexterity index [0,1]d ∈  is defined as 

3
x y zd d d

d
+ +

= , (4) 

where , ,x y zd d d  are indices in directions , ,X Y Z  defined as 

, ,
2 2 2x y zd d dΔα Δβ Δγ

= − = − = −
π π π

, (5) 

where Δ  measures a possible variation of the angle for each point in the 
workspace. The dexterity index is not constant within the workspace. 

The manipulability index is evaluated as a function of the configuration of the 
robot and the values in the active joints, the index reflecting the ability of the robot to 
arbitrarily change the position and orientation of the end effector. To evaluate the 
manipulability index, the Jacobian matrix of the robot J  has to be calculated, in 
order to evaluate the mathematical relationship between the generalized coordinates 
of the active joints q and the pose of the end-effector p  as: 

Jq p=� . (6) 

The manipulability index has been firstly introduced in [16], being evaluated 
with: 

det( )TJJμ = . (7) 

Also, the manipulability index may be calculated as a product of the singular 
value of the TJJ  matrix. In the case when a manipulator has a square Jacobian, the 
manipulability index is 

det( )Jμ = . (8) 
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The isotropy index of a manipulator, is evaluated with the condition number of 
the Jacobian matrix, being an index that illustrates the kinematic performance [17]. 
For a square Jacobian, the condition number is a measure of Jacobian invertibility 
and evaluated with 

1( ) || || || ||k J J J −=  , || || tr( )TJ JWJ= , 1
dim( )

W I
J

= , (9) 

where I is a unit matrix with the same dimensions as the Jacobian. In the case 
of a non-square Jacobian matrix, the condition number is  

max

min
( )k J σ

=
σ

, (10) 

where maxσ  and minσ  are the maximum and minimum singular values of J . 
The value from the above equation is valid only if the elements of the Jacobian 
matrix have the same units of measurements contrary a scaling of the matrix is 
required. The value of the conditioning number is within the range: 

( ) [0, )k J ∈ +∞ , (11) 

this aspect being a computational disadvantage (not having an upper bound) 
This is why, the Local Conditioning Index ( LCI ) has been introduced as 

1LCI
( )k J

= , (12) 

that lies within the range [0,1] . The LCI is expressed for a certain pose of the 
end effector. In order to quantify this value for the entire workspace, as presented in 
[18], the Global Conditioning Index ( GCI ) is evaluated as: 

1 d
( )

GCI
d

WS

WS

WS
k J

WS
=
∫

∫
. (13) 

3. OPTIMIZATION ALGORITHMS  
IN ROBOTICS – STATE OF THE ART 

In robotics, an optimization method requires the development of an objective 
function that quantifies from a mathematical point of view one or more 
performance factors. Most of the factors (or indices) evaluates the dimensions of 
the workspace, the kinematic or dynamic performance, trajectory planning or 
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others. These factors present a maximum or minimum value, are evaluated using 
non/linear equation and, in some cases, do not have a closed form solution. This is 
why, the optimization algorithm used to find the optima has to be chosen 
accordingly to the nature of the performance indices. Most of the used algorithms 
used in the scientific literature are the stochastic ones (that use probabilities or 
randomly chosen data). In the following, the most common used algorithms in 
optimization of robots are presented. 

Brute Force Optimization refers to the identification of the optimal solution 
for the objective function by combining all the possible values that may be 
imposed to the design vector. This algorithm has been used in [19] in order to 
optimize a surgical robot in order to achieve the desired pose of the end effector. 
Also, in [20] Brute Force Optimization has been used to maximize the workspace 
of a robot. Even though this algorithm may lead to optimal solution, as presented in 
[21], the required computational time to reach an optimum has an exponential 
growth with the number of design variables. Also, the computational time is 
increased by the precision of the discretization of the search space [19], [20]. Even 
though, theoretically, the algorithm may lead to a global optimum, due to the 
computational restriction, practically it may not be achieved. 

The Genetic Algorithm is inspired by the genetics of the living organisms. 
The algorithm keeps the information of the solutions using codified populations 
that evolve in time by applying the operators used in genetics: reproduction, 
crossover and mutation. A new population is created at each iteration, the objective 
function being evaluated for each member of the population (each combination of 
the design vector). This process is repeated until a stop criterion is satisfied (a 
maximum number of generations has been achieved, the objective function has 
reached a certain value). As presented in [22], the Genetic Algorithms are suitable 
for non-linear problems, having the advantage of reaching an optimal solution or a 
nearly optimal solution, with low computational times. This type of algorithms has 
been used in several recent papers for designing robots. In [23], the algorithm has 
been used for reaching a certain workspace and maximization of the GCI . Also, in 
[24] a Genetic Algorithms has been used to optimize a robot, imposing as 
performance criterions the rigidity, dexterity, manipulability and the maximization 
of the workspace. In [25], the authors propose a geometric optimization of a 
DELTA Robot in order to maximize the GCI  within the workspace. These papers 
illustrate the advantages of the Genetic Algorithms as the robustness (the ability to 
reach an optimum regardless of the nature of the objective function) and the ability 
to explore a large search space. 

The Particle Swarm Optimization is inspired also from nature. This stochastic 
algorithm simulates the behavior of the bird flocking or fish schooling when 
moving in order to find food (the location of the food being the optimal solution). 
This is an evolutionary algorithm, the position of each member of the swarm being 
updated at each iteration according the previous position and the best position of 
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each individual. This algorithm has been extensively used for optimizing robots. In 
[26], the authors propose the use of the Particle Swarm Optimization for 
minimizing the rigidity of a parallel robot within the workspace. Moreover, the 
author compares the Particle Swarm Optimization with the Genetic Algorithm, 
illustrating that the first one has better performance. More examples are the papers 
[27] and [28] in which the Particle Swarm Optimization is used to optimize parallel 
mechanism taking as performance factors the global compliance or the GCI . In 
these papers, the authors do not make a reasoning regarding the choice of this 
specific algorithm. The papers [29] and [30] presents advantages and disadvantages 
of this algorithm. On the positive side, it is stated that the results are not affected by 
the initial size of e swarm, the algorithm presenting the ability to converge rapidly 
to a solution. On the negative side, it is mentioned that highly complex solution are 
not suited for this algorithm (even though, in [29] is mentioned that it may be used 
for scientific research or engineering purposes).  

The direct search algorithm called Pattern Search is an evolutionary 
algorithm, with a simple concept, easy to be implemented and efficient regarding 
its computational time. As presented in [31], it has the ability to identify a global 
optimum and the possibility to fine search in the vicinity of a local optimum. The 
algorithm starts at a point in which the objective function is evaluated. 
Furthermore, it creates a grid of points near the current one in which the cost 
function is yet again evaluated. The best point in the grid becomes the current point 
and the process is restarted until an optimum is reached. This algorithm has been 
implemented for optimization of a serial robots in [32], taking as performance 
criterions the dexterity and the workspace. Also, the paper [33] presents the 
optimization of a parallel robots in order to maximize several kinematic indices 
using both the Pattern Search and the Genetic Algorithm. Both of these algorithms 
have presented similar efficacy, but the Genetic Algorithm has required a longer 
computational time.  

The Simulated Annealing is an iterative algorithm that uses the annealing 
principles from metallurgy a material is heated then it is cooled in a controlled 
manner, in order to decrease its internal energy. In the algorithm, the internal 
energy of the material is the objective function of the optimization and the 
temperature is a parameter that is progressively decreased (by using an user 
imposed function). Even though the Simulated Annealing is a local optimization 
search method, it has the advantage that it does not converge to a local minimum 
by accepting, based on a probability function, some solutions less advantageous. 
By starting from an initial state and an initial optimal solution, the algorithm is 
searching in its vicinity a new state that has a lower value for the objective function 
(of the internal energy). If such a state is identified, it becomes the new solution 
and the new current state. If in the vicinity of the current state there are no new 
state that lower the objective function, the transition to a one of this is realized 
based on a probabilistic function that considers the difference between the 
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objective functions of the two states and a temperature parameter. The temperature 
parameter is initialized with a high value that is lowered on each iteration of the 
algorithm (similarly to the decrease of the temperature in the real annealing from 
metallurgy) [34]. The Simulated Annealing has been used in the scientific literature 
in order to optimize the architecture of the robots, such an example being [35]. In 
this paper, a serial manipulator is optimized considering the volume of the 
workspace and the total dimension of the mobile elements. Similarly, in [36] the 
optimization of a DELTA robot is proposed, having as performance factor the size 
of the workspace.  

With regard to the performance comparison of the presented algorithms, there 
were few papers that presents a systematic comparison in terms of efficacy (the 
ability to reach an optimum) and efficiency (the ability to reach an optimum with low 
computational time) between many types of optimization algorithms used in robotics. 
Most of the used algorithms are the Particle Swarm Optimization and the Genetic 
Algorithms. For example, in [37] it is stated that the Genetic Algorithms has 
performed lower compared to Particle Swarm Optimization when solving the 
kinematics of a serial robot. This comparison is presented also in [38], in which, in 
terms of efficacy there was no difference regarding the performance. On the efficacy 
side, the Particle Swarm Optimization has required lower computational times.  

 In [39], a robot is optimized with regard to its geometrical dimensions and 
the size of the workspace, four algorithms being compared, among them being the 
Genetic Algorithms and the Simulated Annealing. The paper shows that the 
Simulated Annealing has performed considerably better than the Genetic 
Algorithm. The same results are presented also in [40]: an increased number of 
design parameters leads to higher computational times for the Genetic Algorithm. 

In [41] a comparison between the Particle Swarm Optimization, the 
Simulated Annealing, the Genetic Algorithm and the Pattern Search is conducted 
for optimizing the displacement of pipe robots. Even though, for a similar 
computational time of one hour, the value of the objective function has been almost 
similar, the most performant algorithm has been the Particle Swarm Optimization 
and the least performant one has been the Pattern Search. If the computational time 
has been reduced to 5 minutes, the Simulated Annealing has obtained the best 
results and the worst results correspond to the Particle Swarm Optimization.  

Another paper that presents a comparison between the Genetic Algorithm and 
the Pattern Search is [42], the performance factor being a kinematic index. The 
paper states that the efficacy of the algorithms has been similar but the Pattern 
Search has been less efficient, requiring higher computational times.  

4. PROBLEM FORMULATION 

As presented in the previous section in order to implement optimization 
methods in robotics, some of the most used algorithms are the Particle Swarm 
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Optimization, the Genetic Algorithms, the Pattern Search and the Simulated 
Annealing. According to the current state of the art, there are slightly different 
opinions regarding the better choice among these algorithms, all of these being 
suitable for optimization methods in robotics (in which non/linear equations are 
used, a global optimum is preferred, the model may not be fully known in closed-
form, and without having the derivatives of the objective functions). Therefore, the 
scientific problem addressed in this paper is the identification of one or more 
algorithms that presents the best performances when applied in robotics, for several 
objective functions, both in terms of efficiency as in efficacy. The first step is to 
establish the imposed objective functions, the second step is to implement the 
optimization with all the functions using the chosen algorithms, and the third step 
is to identify the most suitable algorithms. The problem formulation is presented in 
the Fig. 1. 

 

 
Fig. 1 – Problem formulation. 



 Anisia Neamtiu, Veturia Chiroiu, Catalin Boanta, Cornel Brisan 10 128 

5. ALGORITHM COMPARISON SETUP  

The algorithms that are compared regarding their optimization performance 
are the Genetic Algorithm, the Particle Swarm Optimization, the Pattern Search 
and the Simulated Annealing.  

In order to compare the performance of the algorithms the following 
conditions are imposed: 

– The number of design variables is 2, 4 or 6; 
– The algorithms have run 10 times and the medium and maximal results of 

the objective function has been considered. Each of this run has considered 
a maximal number of 10.000 evaluations of the cost function; 

– The cost functions are the maximization of the workspace and the 
maximization of the global conditioning index.  

As a prerequisite, in order to compare the algorithms in robotics, the 
mathematical models of the optimized robots have to be developed. In the case of 
this paper, the optimized robot is a 6 degrees of freedom parallel robot with 
rotational actuators, as presented in the Fig. 2 and the Fig. 3.  

 

 
Fig. 2 – 6 DOF Parallel robot with rotational actuators. 

The robot is composed by a fixed platform, a mobile platform and 6 
rotational-universal-spherical (RUS) kinematic open loops. It is beyond the scope 
of this paper to present all the mathematical formulations regarding the kinematics 
of this robot. A thoroughly presentation of the kinematics is presented in [43], and 
other analysis of kinematics of parallel robots are presented in [44] and [45]. The 
notations from the Fig. 2 and the Fig. 3 are: 1l  and 2l  are the lengths of the first 
and second mobile elements of the RUS open loops, R  and r  are the radiuses of 
the fixed and mobile platforms iα  and iβ  ( 1...6i = ) are the angles of positioning 
the of the spherical and rotational joints on the fixed and mobile platforms, 
respectively. 
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Fig. 3 – Fixed and mobile platforms of the robot. 

 
The implementation has been realized separately for three design vectors 

with different lengths, with 2, 4 and 6 variables, as presented in the equations 
below. 

[ ]2 1 2, varsx l l= , (14) 

[ ]4 1 2, , ratio , ratiovars d ux l l= , (15) 

[ ]6 1 2, , ratio , ratio , , vars d ux l l r R= , (16) 

The constraints of the optimization have been imposed for each length of the 
design vector. Therefore, for the case of two variables, the constraints presented in 
a matrix form are: 

2 2 2
T

vars vars varsA x b< , (17) 

where, 

2
1 0 1 0

1 1 0 1v r

T

a sA
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, (18) 

and 

[ ]2 0.001 0.001 1 1vars
Tb = − − . (19) 

For the vector with 4 variables, the imposed constraints presented as a matrix 
form are: 
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4 4 4
T

vars vars varsA x b< , (20) 

where, 

4

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

vars

T

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

, (21) 

and 

[ ]4 0.001 0.001 1 1 0.1 0.1 10 10var
T

sb = − − − − . (22) 

For the vector with 6 variables, the imposed constraints presented in a matrix 
form are: 

6 6 6
T

vars vars varsA x b< , (23) 

where 

6

1 0 1 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1

var

T

sA

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥⎣ ⎦

, (24) 

and 

[ ]6 0.001 0.001 1 1 0.1 0.1 10 10 0.001 0.001 0v
T

arsb = − − − − − − . (25) 

The four algorithms have been tested for optimizing separately two objective 
functions, commonly used in optimization problems of robots. The first 
optimization criterion is the maximization of the dimension of the workspace. 
Considering that the workspace is discretized in points, the dimensions of the 
workspace is regarded as the total number of points M  included in the workspace: 

_Fit WS M= . (26) 

The second objective function the algorithms have been tested with is the 
maximization of the Global Conditioning Index, GCI , presented in the eq. (13): 
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1
1

1
( ) 1 1_

|| || || ||

M
WS

j jj

WS

dWS
k J

Fit GCI
M J JdWS −

=

= ≅
∫

∑
∫

. (27) 

6. NUMERICAL RESULTS 

The numerical results from this section illustrates the performance of each 
algorithm in order to optimize the architecture of a robot, considering the design 
vector with 2, 4 and 6 variables and two different objective functions. Each 
algorithm has run a number of 10 000 iterations for each cost function.  

The results obtained by the Genetic Algorithm when optimizing a robot 
considering as cost function the workspace and the GCI  are presented in the Fig. 4 
and the Fig. 5 

 
Fig. 4 – Convergence of the Genetic Algorithm for the workspace. 

 

 
Fig. 5 – Convergence of the Genetic Algorithm for the Global Conditioning Index. 
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Analyzing the previous two figures, it can be observed that the value of the 
objective function for the Genetic Algorithm is strongly modified in the first 3000 
iterations. After this, the value is stabilized, the optimal value being reached around 
the iteration 4 000. Also, according to the graphics, an increase of the number of 
design variables does not lead to a higher optimal value. In both figures, the higher 
value is corresponding to the 2 variable case, followed by the 6 variable and 4 
variables cases.  

In the case when the used algorithm is the Particle Swarm Optimization, the 
results of the optimization for the same objective functions are presented in the Fig. 
6 and Fig. 7.  

 
Fig. 6 – Convergence of the Particle Swarm Optimization for the workspace. 

 
Fig. 7 – Convergence of the Particle Swarm Optimization for the Global Conditioning Index. 

By analyzing the previous two figures, in a similar way as for the Genetic 
Algorithm, the cost function in the case of the Particle Swarm Optimization is 
strongly varied in the first 3000 iteration. On the other hand, the maximal value of 
the cost function is reached regardless of the number of variables in the design 
vector (two, four or six variables).  
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The results of the optimization for the Pattern Search algorithm are presented 
in the Fig. 8 and Fig. 9. 

 
Fig. 8 – Convergence of the Pattern Search for the workspace. 

 
Fig. 9 – Convergence of the Pattern Search for the Global Conditioning Index. 

The Fig. 8 and the Fig. 9 show that the Pattern Search presents a very fast 
convergence, reaching the optimal value in most of the cases after 300 iteration 
(ten times faster than the Genetic Algorithm or the Particle Swarm Optimization). 
Still, the fast convergence leads to a mean value of the cost function considerably 
lower than in the case of the first two algorithms, that may be reflected to the fact 
that Pattern Search reaches a local optimum. In the case when the cost function is 
the GCI , the values obtained by the Pattern Search are lower with an order of 
magnitude as for the first two algorithms. On what regards the used number of 
variables, the Pattern Search has reached higher values by using a larger number of 
variables in the design vector.  
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The results of the optimization in the case when the used algorithm is the 
Simulated Annealing are presented in the Fig. 10 and Fig. 11. 

 

 
Fig. 10 – Convergence of the Simulated Annealing for the workspace. 

 
Fig. 11 – Convergence of the Simulated Annealing for the Global Conditioning Index. 

The convergence of the Simulated Annealing is different for the two 
objective functions. For the function that evaluates the workspace (Fig. 10), the 
algorithm presents a fast convergence, the optimal value being reached after 
approximately 1 000 iterations. For the function that evaluates the GCI , the 
algorithm has modified the value of the function even after 9 000 iterations (from a 
total of 10 000). The optimal values are in the same order of magnitude as in the 
case of the Particle Swarm Optimization and the Genetic Algorithm and it may be 
observed that a higher number of variables in the design vector leads to better 
values of the cost function. 
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In the Fig. 12 and the Fig. 13 the optimal values (correspondent to the 
iteration 10 000) of each algorithm are presented, for both of the objective 
functions are presented on two charts, for the cases with 2, 4 and 6 variables in the 
design vector.  

 
Fig. 12 – Comparative results of the four algorithms for the workspace. 

 
Fig. 13 – Comparative results of the four algorithms for the Global Conditioning Index. 

Also, in the Table 1 are presented the optimal value of each algorithm and the 
necessary computational time correspondent to the best value (on the line labeled 
with Max). Also, for each algorithm and objective function, it has been evaluated 
the mean optimal value and the mean computational time after running the 
algorithm 10 times (presented on the line labeled with Med).  
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Table 1 

                   Comparative results of the algorithms for the two objective functions   

   Value of the cost function and the required computational time 

Alg. No. 
Var. 

Val. Workspace 
value  

Computational 
time [s] GCI Computational 

time [s] 
Max 7258 1985 0.036442 858 2 Med 7246.2 1966.4 0.036421 855.2 
Max 7251 1964 0.036434 902 4 Med 7247.9 1973.3 0.036425 903.2 
Max 7253 1913 0.036654 881 

GA 

6 Med 7251.3 1971.8 0.036649 904.9 
Max 7258 1863 0.036673 861 2 
Med 7257.4 1868.2 0.036668 859.3 
Max 7258 1897 0.036673 859 4 Med 7258 1889.5 0.036671 862.1 
Max 7258 1884 0.036673 864 

PSO 

6 Med 7258 1893.4 0.036673 863.2 
Max 7241 3036 0.003493 3455 2 
Med 7219.3 3029.2 0.003491 3452.1 
Max 7235 3003 0.003574 3462 4 Med 7226.2 3031.8 0.003563 3459.3 
Max 7244 3105 0.003590 3433 

PS 

6 Med 7239 3095.4 0.003582 3455.2 
Max 7255 2799 0.034448 2434 2 
Med 7252.5 2771.5 0.034331 2383.3 
Max 7258 2930 0.035718 2582 4 Med 7255.8 2856.4 0.035425 2501.8 
Max 7251 2852 0.036528 2560 

SA 

6 Med 7256.1 2869.2 0.035991 2544.6 
 
By analyzing the table above, is can be stated the Particle Swarm 

optimization has reached the maximal absolute value and the maximal mean value 
of the objective function. These characteristics has been preserved regardless of the 
number of variables in the design vector and for both of the objective functions. 
This is why, the Particle Swarm Optimization may be considered as the most 
efficacious algorithm among all the four algorithms.  

On the other side, the Genetic Algorithm and the Simulated Annealing 
presented high performances, almost comparable to the Particle Swarm 
Optimization (both for the maximal values as for the mean ones). What is more, 
these two algorithms have performed equally to the Particle Swarm Optimization 
in two cases: optimization with the workspace as cost function and two design 
variables for the Genetic Algorithm and 4 variables for the Simulated Annealing.  

The least efficacious algorithm has been, for each case, the Pattern Search. 
Even though this algorithm presents a fast convergence, it has demonstrated lower 
performances than the other three algorithms. In the case when the objective function 
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has been the GCI , the algorithm has obtained the results (both for maximal and 
mean values) with a degree of magnitude lower compared to the others. 

Regarding the efficiency, a first aspect that may be observed is the fact that 
the required computational time varies with the type of the objective function. For 
evaluating the efficiency, the mean value of the computational time is analyzed. 
Therefore, in the case when the objective function has been the workspace, the 
Particle Swarm Optimization has obtained the best values of the fitness function by 
using the lowest computational times, regardless of the number of variables in the 
design vector. This is why, the Particle Swarm Optimization is considered to be the 
most efficient algorithm. Also, the Genetic Algorithm demanded a computational 
time almost similar to the Particle Swarm Optimization. The algorithm that 
required the higher computational time is the Pattern Search, being considered the 
least efficient algorithm.  

In the case when the objective function has been the GCI , the lowest mean 
time has been obtained by the Genetic Algorithm, for the case with 2 variables in 
the design vector. Still, for the cases with four and six variables, the lowest time 
corresponds to the Particle Swarm Optimization. On the other hand, the Simulated 
Annealing and the pattern Search have required computational time up to four 
times higher as in the case of the Genetic Algorithm or the Particle Swarm 
Optimization. The least effective algorithm may be considered, again, the Pattern 
Search. 

As a general observation, for each algorithm and cost function, the required 
computation time of each algorithm is higher with the increase of the number of 
variables in the design vector but, on the other hand, the returned value of the 
objective function is improved.  

7. CONCLUSIONS 

In the present paper, a comparative analysis of the performance of four 
optimization algorithms (the Genetic Algorithm, the particle Swarm Optimization, 
the Pattern Search and the Simulated Annealing), frequently used for optimizing 
the robots has been compared.  

The performance of these algorithms has been analyzed on what regard the 
geometric optimization of a robot, with different number of variables in the design 
vector and by using two objective functions: the maximization of the workspace 
and the maximization of the Global Conditioning Index. 

Therefore, it may be concluded that, on what regards the efficacy (the ability 
of an algorithm to reach an optimal value) the most performant algorithm has been 
the Particle Swarm Optimization, regardless of the number of the variables in the 
design vector or of the type of the cost function. The least efficient algorithm is the 
Pattern Search, even though it presents a fast convergence from the first iterations.  
Regarding the Genetic Algorithm and the Simulated Annealing, these algorithms 
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have performed similarly, their performance being almost equal to the Particle 
Swarm Optimization. 

On what concerns the efficiency, the ability to reach an optimum using a 
computational time as low as possible, the least mean computational time has been 
obtained again by the Particle Swarm Optimization.  

Regarding the convergence, the algorithms that presents the fastest 
convergence is the Pattern Search, reaching the optimal value after 500 iterations 
(5% from the total of 10 000). On the other hand, the Genetic Algorithm and the 
Particle Swarm Optimization reach an optimal value after 3000 iterations (meaning 
30% from the total number). The convergence of the Simulated Annealing has not 
been constant, the algorithm reaching an optimal value also in the first 500 
iterations (5% from the total) but also after 9 000 iterations (90% of the total). 

By referring to the current state of the art, it can be concluded that, in the case 
of optimizing a robot, the most efficient and effective algorithm is the Particle 
Swarm Optimization, followed by the Simulated Annealing. On the other hand, 
when a feasible solution is to be identified in a short period of time, the most 
suitable algorithm is the Pattern Search because it presents a fast convergence (in 
about 300 iterations), but it reaches a local optimum. This algorithm may be used 
in the pre-design phase or for a rapid estimation of the real dimensions of a robot.  

As a future outlook, a potential development of the work presented in this 
paper is the comparison of the performance of the optimization algorithms in the 
case of a multi-objective optimization problem.  

Acknowledgements. The authors acknowledge similar and equal contributions to this 
paper. The authors gratefully acknowledge the financial support received from Romanian 
Ministry of Research and Innovation, project PN-IIIP2-2.1-PED-2019-0085 CONTRACT 
447PED/2020 (Acronym POSEIDON) 

 
Received on  July 1, 2021 

REFERENCES 

1. IQBAL, Kamran, Fundamental engineering optimization methods, Londres: Bookboon, pp. 35‒50, 
2013. 

2. NOCEDAL, Jorge, WRIGHT, Stephen, Numerical optimization, Springer Science & Business 
Media, 2006. 

3. LUENBERGER, David G., Linear and nonlinear programming, Reading, MA, Addison-wesley, 
1984. 

4. MARLER, R. Timothy, ARORA, Jasbir S., Survey of multi-objective optimization methods for 
engineering, Structural and multidisciplinary optimization, pp. 369‒395, 2004. 

5. CARAMIA, Massimiliano, DELL'OLMO, Paolo, Multi-objective management in freight logistics: 
Increasing capacity, service level and safety with optimization algorithms, Springer Science 
& Business Media, 2008. 

6. BRIȘAN, Cornel, BOANTĂ, Cătălin, CHIROIU, Veturia, Introduction in Optimization of 
industrial robots. Theory and applications, Editura Academiei Române, 2019. 



21 Performance Comparison of Optimization Algorithms for the Design of Robots  139 

7. CHAUDHURY, Arkadeep Narayan, GHOSAL, Ashitava, Optimum design of multi-degree-of-
freedom closed-loop mechanisms and parallel manipulators for a prescribed workspace using 
Monte Carlo method, Mechanism and Machine Theory, 118, pp. 115‒138, 2017. 

8. FU, Jianxun, GAO, Feng, Optimal design of a 3-leg 6-DOF parallel manipulator for a specific 
workspace, Chinese Journal of Mechanical Engineering, 29, 4, pp. 659‒668, 2016. 

9. HAMIDA, Ben, et.al., Comparative study of design of a 3-DOF translational parallel manipulator 
with prescribed workspace, IFToMM World Congress on Mechanism and Machine Science, 
Springer, Cham, 2019, pp. 501‒512. 

10. LARIBI, Med Amine,et.al., Robust Optimization of the RAF Parallel Robot for a Prescribed 
Workspace, Computational Kinematics, Springer, Cham, 2018, pp. 383‒393. 

11. LIU, Xin-Jun, WANG, Jingsong, OH, Kun-Ku, KIM, Jongwon, A New Approach to the Design of 
a DELTA Robot with a Desired Workspace, Journal of Intelligent and Robotic Systems, 39, 2, 
pp. 209‒225, 2004. 

12. WU, Guanglei, BAI, Shaoping, HJØRNET, Preben, Architecture optimization of a parallel 
Schönflies-motion robot for pick-and-place applications in a predefined 
workspace, Mechanism and Machine Theory, 106, pp. 148‒165, 2016. 

13. MERLET, Jean-Pierre, Parallel robots, Springer Science & Business Media, 2006. 
14. SICILIANO, Bruno, KHATIB, Oussama (eds.), Springer handbook of robotics, Springer, 2016. 
15. ZARGARBASHI, Seyedhossein., KHAN, Waseem, ANGELES, Jorge, The Jacobian condition 

number as a dexterity index in 6R machining robots, Robotics and Computer-Integrated 
Manufacturing, 28(6), pp. 694‒699, 2012. 

16. YOSHIKAWA, Tsuneo, Manipulability of robotic mechanisms, The international journal of 
Robotics Research, 4, 2, pp. 3‒9, 1985. 

17. PATEL, Sarosh, SOBH, T., Manipulator performance measures-a comprehensive literature 
survey, Journal of Intelligent & Robotic Systems, 77, 3, pp. 547‒570, 2015. 

18. GOSSELIN, Clement, ANGELES, Jorge, A global performance index for the kinematic 
optimization of robotic manipulators, pp. 220‒226, 1991. 

19. LUM, Mitchell JH, et al. Kinematic optimization of a spherical mechanism for a minimally 
invasive surgical robot, IEEE International Conference on Robotics and Automation, 
Proceedings of ICRA'04, pp. 829‒834, IEEE, 2004. 

20. MONSARAT, Bruno, GOSSELIN, Clément M., Workspace analysis and optimal design of a 3-
leg 6-DOF parallel platform mechanism, IEEE Transactions on Robotics and Automation, 19, 
6, pp. 954‒966, 2003. 

21. WAN, Yuehua, et al., A survey on the parallel robot optimization, Proceedings of II-nd  
International Symposium on Intelligent Information Technology Application, pp. 655‒659 
IEEE, 2008.     

22. ZHANG, Xiaoli, NELSON, Carl A., Multiple-criteria kinematic optimization for the design of 
spherical serial mechanisms using genetic algorithms, Journal of Mechanical Design, 133, 1, 
2011. 

23. LI, Zhibin, et al., Type synthesis, kinematic analysis, and optimal design of a novel class of 
Schönflies-Motion parallel manipulators, IEEE Transactions on Automation Science and 
Engineering, 10, 3, pp. 674‒686, 2012. 

24. GAO, Zhen, ZHANG, Dan, Performance analysis, mapping, and multiobjective optimization of a 
hybrid robotic machine tool, IEEE Transactions on industrial electronics, 62, 1, pp. 423‒433, 
2014. 

25. LIAO, Bin, LOU, Yunjiang, Optimal kinematic design of a new 3-DOF planar parallel 
manipulator for pick-and-place applications, 2012 IEEE International Conference on 
Mechatronics and Automation, pp. 892‒897, IEEE, 2012. 

26. XU, Qingsong, LI, Yangmin, Stiffness optimization of a 3-dof parallel kinematic machine using 
particle swarm optimization, 2006 IEEE International Conference on Robotics and 
Biomimetics, pp. 1169‒1174,  IEEE, 2006. 



 Anisia Neamtiu, Veturia Chiroiu, Catalin Boanta, Cornel Brisan 22 140 

27. ZHANG, Dan, WEI, Bin, Kinematic analysis and optimization for 4PUS-RPU mechanism, 2015 
IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 330‒335, 
IEEE, 2015. 

28. ZHANG, Zhenchuan, YU, Hongjian, DU, Zhijiang, Design and kinematic analysis of a parallel 
robot with Remote Center of Motion for Minimally Invasive Surgery, 2015 IEEE International 
Conference on Mechatronics and Automation (ICMA), pp. 698‒703, IEEE, 2015. 

29. BAI, Qinghai, Analysis of particle swarm optimization algorithm, Computer and information 
science, 3, 1, pp. 180‒184, 2010. 

30. SHI, Yuhui, EBERHART, Russell C., Empirical study of particle swarm optimization, Proceedings 
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, pp. 
1945‒1950, 1999. 

31. AL-SUMAIT, J. S., AL-OTHMAN, A. K., SYKULSKI, J. K., Application of pattern search 
method to power system valve-point economic load dispatch, International Journal of 
Electrical Power & Energy Systems, 29, 10, pp. 720‒730, 2007. 

32. ZHANG, Dong, YUN, Chao, SONG, Dezheng, Dexterous space optimization for robotic belt 
grinding, Procedia Engineering, 15, pp. 2762‒2766, 2011. 

33. ENFERADI, Javad, NIKROOZ, Reza, The performance indices optimization of a symmetrical 
fully spherical parallel mechanism for dimensional synthesis, Journal of Intelligent & Robotic 
Systems, 90, 3-4, pp. 305‒321, 2018. 

34. LI, Zixiang, TANG, Qiuhua, ZHANG, LiPing, Minimizing energy consumption and cycle time in 
two-sided robotic assembly line systems using restarted simulated annealing algorithm, 
Journal of Cleaner Production, 135, pp. 508‒522, 2016. 

35. LANNI, C., SARAMAGO, S. F. P., CECCARELLI, M., Optimal design of 3R manipulators by 
using classical techniques and simulated annealin, Journal of the Brazilian Society of 
Mechanical Sciences, 24, 4, pp. 293‒301, 2002. 

36. ABOULISSANE,  Badreddine, EL BAKKALI, Larbi, EL BAHAOUI, Jalal, Workspace analysis 
and optimization of the parallel robots based on computer-aided design approach, Facta 
Universitatis, Series: Mechanical Engineering, 18, 1, pp. 79‒89, 2020. 

37. AYYILDIZ, Mustafa, ÇETINKAYA, Kerim, Comparison of four different heuristic optimization 
algorithms for the inverse kinematics solution of a real 4-DOF serial robot 
manipulator, Neural Computing and Applications, 27, 4, pp. 825‒836, 2016. 

38. ERDOGMUS, Pakize, TOZ, Metin, Heuristic optimization algorithms in robotics, Serial and 
Parallel Robot Manipulators-Kinematics, Dynamics, Control and Optimization, pp. 311‒338, 
InTech Publisher, 2012. 

39. GUPTA, Surbhi, SARKAR, Sankho Turjo, KUMAR, Amod, Design optimization of minimally 
invasive surgical robot, Applied soft computing, 32, pp. 241‒249, 2015. 

40. LOU, Yunjiang, et al., Optimization algorithms for kinematically optimal design of parallel 
manipulators, IEEE Transactions on Automation Science and Engineering, 11, 2, pp. 
574‒584, 2013. 

41. SAVIN, Sergei, Parameter Optimization for Walking Patterns and the Geometry of In-Pipe 
Robots, 2018 International Conference on Industrial Engineering, Applications and 
Manufacturing (ICIEAM), pp. 1‒6, IEEE, 2018. 

42. ENFERADI, Javad, NIKROOZ, Reza, The performance indices optimization of a symmetrical 
fully spherical parallel mechanism for dimensional synthesis, Journal of Intelligent & Robotic 
Systems, 90, 3-4, pp. 305‒321, 2018. 

43. ZHANG, Dan. Parallel robotic machine tools, Springer Science & Business Media, New York, 
pp. 93‒115, 2009. 

44. PLITEA, N., HESSELBACH, J., PISLA, D., RAATZ, A., VAIDA, C., WREGE, J., BURISCH, 
A.: Innovative development of parallel robots and microrobots, Acta Tehnica Napocensis, 
Series of Applied Mathematics and Mecanics 5 ,49, pp. 5‒26, 2006. 

45. HUSTY, M., BIRLESCU, I., TUCAN, P., VAIDA, C., PISLA, D.: An algebraic parameterization 
approach for parallel robots analysis, Mechanism and Machine Theory, 140, pp. 245‒257, 
2019. 




