Ultra-Composites: designing stochastic composites with large microstructural variability

Authors

  • Catalin R. Picu
  • Vineet Negi
  • Jacob Merson

Keywords:

stochastic composites, homogenization, particulate composites

Abstract

Regular composite materials are made from a small number of constituent phases, usually two, which are arranged spatially such to maximize the stiffness and strength of the material. In this article, we review results related to defining a new class of stochastic composite materials with large microstructural variability both in terms of the composition and spatial distribution of constituents. Further, new data on Green functions in stochastic continua is presented. 

References

AGARWAL, B.D., Analysis and performance of fiber composites, Wiley, New York, 1990.

REILLY, D.T., BURSTEIN, A.H., The elastic and ultimate properties of compact bone tissue, J.cBiomech, 8, pp. 393–405, 1975.

MCDEVITT, D., Cell biology of the eye, Elsevier, 2012.

BRENEMAN, C.M., BRINSON, L.C., SCHADLER, L.S., NATARAJAN, B., KREIN, M., WU,cK., MORKOWCHUK, L., LI, Y., DENG, H., XU, H., Stalking the materials genome: a datadriven approach to the virtual design of nanostructured polymers, Adv. Funct. Mater., 23, pp.c5746–5752, 2013.

ERMAN, B., MARK, J.E., Structure and properties of rubber-like networks, Oxford Univ. Press,cNew York, 1997.

PICU, R.C., LI, Z., SOARE, M.A., SOROHAN, S., CONSTANTINESCU, D.M., NUTU, E., Composites with fractal microstructure: the effect of long range correlations on elastic-plasticcand damping behavior, Mech. Mater., 69, pp. 251–261, 2014.

DIMAS, S.D., GIESA, T., BUEHLER, M.J., Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture, J. Mech. Phys. Sol., 63, pp. 481–490, 2014.

BAN, E., BAROCAS, V.H., SHEPHARD, M.S., PICU, R.C., Softening in random networks of non-identical beams, J. Mech. Phys. Sol., 87, pp. 38–50, 2016.

KALE, S., OSTOJA-STARZEWSKI, M., Morphological study of elastic-plastic-brittle transitions in disordered media, Phys. Rev. E, 90, pp. 042405, 2014.

HUYSE, L., MAES, M.A., Random field modeling of elastic properties using homogenization, ASCE J. Eng. Mech., 127, pp. 27–36.

Published

2016-02-05