On the soft origami robots with shape memory alloys artificial muscles
Keywords:
Origami soft robots, Shape memory alloys (SMA), Bouc-Wen model, SurgeryAbstract
Folding in nature allows development of complex structures such as flowers, insect wings, proteins and intestines. The origami robots can be obtained from folding the elastomer foils and by embedding the shape memory alloys (SMAs) elements. The SMA artificial muscles have the role of producing the fast motion. The hardening effect corresponding to the smooth hysteretic behaviour of SMA artificial muscle is investigated together to the actuation and the force performance by using a Bouc-Wen model coupled to the intrinsic time which governs the behavior of the SMAs. The soft robots can offer a good opportunity for drug delivery and minimally-invasive surgical procedures.
References
MAJIDI, C., Soft Robotics: A Perspective - Current Trends and Prospects for the Future, Soft Robotics, 1, 1, pp. 5-11, 2013; doi: 10.1089/soro.2013.0001.
RUS, D., TOLLEY, M., Design, fabrication and comtrol of soft robots, Nature 521, pp. 467-475, 2015.
SCHMITT, F., PICCIN, O., BARBÉ, L., BAYLE, B., Soft Robots Manufacturing: A Review, Front. Robot., AI 5:84, 2018; https://doi.org/10.3389/frobt.2018.00084.
MAHADEVAN, L., RICA, S., Self-organized origami, Science, 307, 5716, p. 1740, 2005; doi: 10.1126/science.1105169.
LEE, D.Y., KIM, S.R., KIM, J.S., PARK, J.J., CHO, K.J, Origami wheel transformer: a variable diameter wheel drive robot using an origami structure, Soft Robotics, 4, 2, pp. 163–180, 2017; doi: 10.1089/soro.2016.0038.
TUMER, N., GOODWINE, B., SEN, M., A review of origami applications in mechanical engineering, Proc. Inst. Mech. Eng., Part C, 230, 14, pp. 2345–2362, 2016; doi.org/10.1177/0954406215597713.
ROURKE, O.J., How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra, Cambridge Univ. Press, 2011.
LANG, R.J., Twists, Tilings, and Tesselations. Mathematical Methods for Geometric Origami, CRC Press, 2017.
LUO, M., YAN, R., WAN, Z., QIN, Y., SANTOSO, J., SKORINA, E.H., ONAL, C.D., OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot, IEEE Robotics and Automation Letters, pp. 1993-1999, 2007.
LASCHI, C., MAZZOLAI, B., CIANCHETTI, M., Soft robotics: technologies and systems pushing the boundaries of robot abilities, Sci. Robot., 1, 1, 2016; doi:10.1126/scirobotics.aah3690.
BRISAN, C., BOANTA, C., CHIROIU, V., Introduction in optimization of industrial robots. Theory and applications, Edit. Academiei Române, 2019.
MAZZOLAI, B., MARGHERI, L., CIANCHETTI, M., DARIO, P., LASCHI, C., Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions, Bioinspir. Biomim., 7, 2, 2012; doi: 10.1088/1748-3182/7/2/025005.
KURIBAYASHI, K., Millimeter-sized joint actuator using a shape memory alloy, Sensors and Actuators, 20, 1-2, pp. 57-64, 1989.
VERHOEVEN R., HILLER, M., TADOKORO, S., Workspace of tendon-driven Stewart platforms: Basics, classification, details on the planar 2-DOF class, International Conference on Motion and Vibration Control MOVIC, Institute of Robotics, Zürich, Switzerland, 3, pp. 871-876, 1998.
SIMAAN, N., SHOHAM, M., Geometric interpretation of the derivatives of parallel robots’ Jacobian matrix with application to stiffness control, Journal of Mechanical Design, 125, 1, pp. 33-42, 2003.
HAY, A.M., SNYMAN, J.A., The chord method for the determination of nonconvex workspaces of planar parallel manipulators, Computers & Mathematics with Applications, 43, 8, pp. 1135-1151, 2002.
KHAN, R., BILLAH, M, WATENABE, M., SHAFIE, A.A., Small Scale Parallel Manipulator Kinematics for Flexible Snake Robot Application, Communications in Control Science and Engineering (CCSE), 2, pp. 82-87, 2017.
CHIROIU, V., IONESCU, M.F., SIRETEANU, T., IOAN, R., MUNTEANU, L., On intrinsic time measure in the modeling of cyclic behavior of a Nitinol cubic block, Smart Materials and Structures, 24, 3, 035022, pp. 1-11, 2015.
KADASHEVICH, Y.I., MOSOLOV, A.B., Endochronic theory of plasticity: Fundamentals and outlook, Izvestiia Akademii Nauk SSSR, Mekhanika Tverdogo Tela, 1, pp. 161-168, 1989.
BOUC, R., Modèle mathématique d’hystérésis, Acustica, 24, pp. 16–25, 1971.
BIRLESCU, I., HUSTY, M., VAIDA, C., PLITEA, N., NAYAK, A., PISLA, D., Complete Geometric Analysis Using the Study SE(3) Parameters for a Novel, Minimally Invasive Robot Used in Liver Cancer Treatment, Symmetry, 11, 12, 1491, 2019.
PISLA, D., BIRLESCU, I., VAIDA, C., TUCAN, P., PISLA, A., GHERMAN, B., CRISAN, N., PLITEA, N., Algebraic Modeling of Kinematics and Singularities for a Prostate Biopsy Parallel Robot, Proceedings of the Romanian Academy, series A: Mathematics, Physics, Technical Sciences, Information Science, 19, 3, pp. 489-497, 2018.
CHIROIU, V., MUNTEANU, L., RUGINA, C., On the control of a cooperatively robotic system by using a hybrid logic algorithm, Proceedings of the Romanian Academy, series A: Mathematics, Physics, Technical Sciences, Information Science, 19, 4, pp. 589-596, 2018.
PLITEA, N., SZILAGHYI, A., PISLA, D., Kinematic Analysis of a new 5-DOF Modular Parallel Robot for Brachytherapy, Robotics and Computer Integrated Manufacturing, 31, pp. 70-80, 2016; doi.org/10.1016/j.rcim.2014.07.005.
MUNTEANU, L., RUGINA, C., DRAGNE, C., CHIROIU, V., On the Robotic Control Based on Interactive Activities of Subjects, Proceedings of the Romanian Academy, series A: Mathematics, Physics, Technical Sciences, Information Science (in press).
CHIROIU, V., MUNTEANU, L., IOAN, R., DRAGNE, C., MAJERCSIK, L., Using the Sonification for Hardly Detectable Details in Medical Images, Scientific Reports, 9, article number 17711, 2019; https://doi.org/10.1038/s41598-019-54080-7.
Published
Issue
Section
Copyright (c) 2021 The Romanian Journal of Technical Sciences. Applied Mechanics.
This work is licensed under a Creative Commons Attribution 4.0 International License.