A novel control architecture for robotic-assisted single incision laparoscopic surgery

Keywords:

Robotic surgery, client-server architecture, teleoperation, kinematics, simulation

Abstract

In order to obtain a ready for printing TEXT, it is recommended to avoid the introduction of inutile TAB or PAUSE. It is also recommended that the paper has an even number of pages. Single Incision Laparoscopic Surgery is a developing procedure which has the potential to become the future of laparoscopic surgery. Its main advantage over the classic laparoscopic surgical interventions consists in its potential of hiding any trace of a surgery operation if achieved through the umbilicus. Nevertheless, this procedure requires highly developed technical equipment in a very narrow space, with large dexterity, for this reason robotics may provide a viable solution. The paper focuses on the development of a robotic SILS instruments architecture and a communication protocol within a master-slave teleoperated robotic system by implementing the client-server approach to transfer information between different devices to render a smooth operation of the equipment, adapted to the medical specialists’ needs. The master component is the well-known Omega.7 haptic device, while the slave component consists of the KUKA iiwa LBR collaborative robot which positions the set of custom designed robotic SILS instruments. The inverse kinematics of the instruments has been also developed, to be further used within the control system. A set of simulations using the CoppeliaSim and Matlab environments have been done to show that the proposed solution can potentially be implemented into a fully developed solution.

References

SUZUKI, Y., WAKASUGI, M., MIKAMORI, M., TAMAOKA, K., NAKAHARA, Y., TEI, M., FURUKAWA, K., OHTSUKA, M., MASUZAWA, T., AKAMATSU, H., Long-term outcomes of single-incision versus multiport laparoscopic totally extra-peritoneal inguinal hernia repair: a single-institution experience of 186 consecutive cases, Surg Today. 2021 Jun 11. doi: 10.1007/s00595-021-02323-4. Epub ahead of print. PMID: 34115209.

CHEM, B.S.M., LAKHOTIA, S., KHOO, C.K., SIOW, A.Y.M., Single incision laparoscopic surgery in gynecology: Evolution, current trends, and future perspectives, Gynecol. Minim. Invasive Ther., 1, pp. 9-18, 2012.

PETRONI, G., NICCOLINI, M., MENCIASSI, A., DARIO, P., CUSCHIERI, A., A novel intracorporeal assembling robotic system for single-port laparoscopic surgery, Surg Endosc., 27, 2, pp. 665-670, 2013.

WORTMAN, T.D., MONDRY, J.M., FARRITOR, S.M., OLEYNIKOV, D., Single-site colectomy with miniature in vivo robotic platform, IEEE Trans Biomed Eng., 60, 4, pp. 926-929, 2013.

YUNG, K.L., CHEUNG, J.L.K., CHUNG, S.W., SINGH, S, YEUNG, C.K., A singleport robotic platform for laparoscopic surgery with a large central channel for additional instrument, Ann Biomed Eng., 45, 9, pp. 2211-2221, 2017.

KOBAYASHI, Y., SEKIGUCHI, Y., NOGUCHI, T., TAKAHASHI, Y., LIU, Q., OGURI, S., TOYODA, K., UEMURA, M., IEIRI, S., TOMIKAWA, M., OHDAIRA, T., HASHIZUME, M., FUJIE, M.G., Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery, Int J Med Robot, 11, 2, pp. 235-246, 2015.

CHEON, B., GEZGIN, E., JI, D.K., TOMIKAWA, M., HASHIZUME, M., KIM, H.J., HONG, J., A single port laparoscopic surgery robot with high force transmission and a large workspace, Surg Endosc, 28, 9, pp. 2719-2729, 2014.

XU, K., GOLDMAN, R.E., DING, J., ALLEN, P.K., FOWLER, D.L., SIMAAN, N., System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5546-5552, 2009.

XU, K., ZHAO, J., FU, M., Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy, IEEE/ASME Trans Mechatron, 20, 5, pp. 2133-2145, 2015

DOBBS, R.W., HALGRIMSON, W.R., TALAMINI, S., VINGESWARAN, H.T., WILSON, J.O., CRIVELLARO, S., Single-port robotic surgery: the next generation of minimally invasive urology, World J Urol. Apr., 38, 4, pp. 897-905, 2020, doi: 10.1007/s00345-019-02898-1. Epub 2019 Aug 28. PMID: 31463560.

ELLI, E., GONZALES-HEREDIA, R., SARVEPALLI, S., MASRUR, M., Laparoscopic and robotic sleeve gastrectomy: short- and long-term results, Obes Surg. 2015 Jun., 25, 6, pp. 967-974, 2015, doi: 10.1007/s11695-014-1499-0. PMID: 25417069.

HAGEN, M.E., BALAPHAS, A., PODETTA, M., ROHNER, P., JUNG, M.K., BUCHS, N.C., BUEHLER, L., MENDOZA, J.M., MOREL, P., Robotic single-site versus multiport laparoscopic cholecystectomy: a case-matched analysis of short- and long-term costs, Surg Endosc. 2018 Mar., 32, 3, pp. 1550-1555, 2018, doi: 10.1007/s00464-017-5843-z. Epub 2017 Oct 19. PMID: 29052069.

LEVIC, K, DONATSKY, A.M., BULUT, O., ROSENBERG, J., A Comparative Study of Single-Port Laparoscopic Surgery Versus Robotic-Assisted Laparoscopic Surgery for Rectal Cancer, Surg Innov. Aug., 22, 4, pp. 368-375, 2015, doi: 10.1177/1553350614556367. Epub 2014 Nov 5. PMID: 25377216.

LOPEZ, S, MULLA, Z.D., HERNANDEZ, L., GARZA, D.M., PAYNE, T.N., FARNAM, R.W., A Comparison of Outcomes Between Robotic-Assisted, Single-Site Laparoscopy Versus Laparoendoscopic Single Site for Benign Hysterectomy, J Minim Invasive Gynecol. Jan., 23, 1, pp. 84-88, 2016, doi: 10.1016/j.jmig.2015.08.883. Epub 2015 Aug 29. PMID: 26321172.

CORRADO, G., CUTILLO, G., MANCINI, E., BAIOCCO, E., PATRIZI, L., SALTARI, M., DI LUCA SIDOZZI, A., SPERDUTI, I., POMATI, G., VIZZA, E., Robotic single site versus robotic multiport hysterectomy in early endometrial cancer: a case control study, J Gynecol Oncol. Jul., 27, 4:e39., 2016, doi: 10.3802/jgo.2016.27.e39. PMID: 27171672; PMCID: PMC4864515.

VAIDA, C., PISLA, D., PLITEA, N., GHERMAN, B., GUYRKA, B., Development of a Control System for a Parallel Robot used in Minimally Invasive Surgery, IFMBE Proc., 26, pp. 171-176, 2009, doi: 10.1007/978-3-642-04292-8_38.

GALDAU, B., PLITEA, N., VAIDA, C., COVACIU, F., PISLA, D., Design and control system of a parallel robot for brachytherapy, In: Proceedings of IEEE international conference on automation, quality and testing, robotics. pp 1-6, 2014.

VAIDA, C., PISLA, D., COVACIU, F., GHERMAN, B., PISLA, A., PLITEA, N., Development of a control system for a HEXA parallel robot, IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1-6, 2016, doi: 10.1109/AQTR.2016.7501318.

PISLA, D., ANDRAS, I., VAIDA, C., CRISAN, N., ULINICI, I., BIRLESCU, I., PLITEA, N., New approach to hybrid robotic system application in single incision laparoscopic surgery, ACTA TECHNICA NAPOCENSIS, Series: Applied Mathematics, Mechanics, and Engineering, Accepted for publication, 2021.

BAGHDADI, A., HOSHYARMANESH, H., DE LOTBINIERE-BASSETT, M., CHOI, S.K., LAMA, S., SUTHERLAND, G., Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device, Expert Review of Medical Devices., 17, 7, pp. 721-730, 2020.

PISLA, D., GHERMAN, B., PLITEA, N., GYURKA,B., VAIDA, C., VLAD, L., GRAUR, F., RADU, C., SUCIU, M., SZILAGHI, A., STOICA, A., PARASURG hybrid parallel robot for minimally invasive surgery, Chirurgia, 106, 5, pp. 619-625, 2011.

PISLA, D., PLITEA, N., GHERMAN, B., VAIDA, C., PISLA, A., SUCIU, M., Kinematics and design of a 5-DOF parallel robot used in minimally invasive surgery, Advances in robot kinematics: Motion in man and machine, pp. 99-106, 2010.

VAIDA, C., PISLA, D., PLITEA, N., GHERMAN, B., GYURKA, B., STANCEL, E., HESSELBACH, J., RAATZ, A., VLAD, L., GRAUR, F., Development of a control system for a parallel robot used in minimally invasive surgery, IFMBE Proceedings, 26, pp. 171-176, 2009.

PISLA, D., PLITEA, N., GHERMAN, B., VAIDA, C., PISLA, A., SUCIU, M., Kinematics and design of a 5-DOF parallel robot used in minimally invasive surgery, Advances in robot kinematics: Motion in man and machine, pp. 99-106, 2010.

GHERMAN, B., VAIDA, C., PISLA, D., PLITEA, N., GYURKA, B., LESE, D., GLOGOVEANU, M., Singularities and Workspace Analysis for a Parallel Robot for Minimally Invasive Surgery, IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1-6, doi: 10.1109/AQTR.2010.5520866, 2010.

VAIDA, C., PLITEA, N., GHERMAN, B., SZILAGHYI, A., GALDAU, B., COCOREAN, D., COVACIU, F., PISLA, D., Structural Analysis and Synthesis of Parallel Robots for Brachytherapy, New Trends in Medical and Service Robots. Mechanisms and Machine Science, 16, pp. 191-204, 2014.

SCHONSTEIN, C., Kinematic control functions for a serial robot structure based on the time derivative Jacobian matrix, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, 61, II, pp. 219-224, 2018.

SCHONSTEIN, C., PANC, N., Establishing the Jacobian matrix for a three degrees of freedom serial structure, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, 61, I, pp. 93-98, 2018.

WEI, L., NAJDOVSKI, Z., ZHOU, H., DESHPANDE, S., NAHAVANDI, S., Extending support to customised multi-point haptic devices in CHAI3D, Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2014-Janua, no. January, pp. 1864-1867, 2014.

CORKE, P., MATLAB toolboxes: robotics and vision for students and teachers, in IEEE Robotics & Automation Magazine, 14, 4, pp. 16-17, Dec. 2007, doi: 10.1109/M-RA.2007.912004.

ROHMER, E., SINGH, S.P.N., FERRSE, M., V-REP: A versatile and scalable robot simulation framework, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321-1326, 2013, doi: 10.1109/IROS.2013.6696520.

Published

2021-09-20