Active control of lateral balance in ankle-foot complex system


  • Valerica Mosnegutu Institute of Solid Mechanics of Romanian Academy, Bucharest, Romania
  • Marius Ionescu Institute of Solid Mechanics of Romanian Academy, Bucharest, Romania
  • Dan Dumitriu Institute of Solid Mechanics of Romanian Academy, Bucharest, Romania
  • Veturia Chiroiu Institute of Solid Mechanics of Romanian Academy, Bucharest, Romania


Active control, ankle-foot system


The goal of balance is to avoid falls and keeping the body center of mass over the base of the support. The control of the quiet, upright stance consists from a set of simple feedback laws where a deviation from a set point detected by one or multiple sensor signals, is mapped onto a counter force that brings the center of mass to the set point. This counter force is usually assumed to be generated by the ankle musculature. Walking can be characterized as a sequence of controlled falls.


TZAFESTAS, S., RAIBERT, M., Robust Sliding-mode Control Applied to a 5-Link Biped Robot, J. Intell. Robot. Syst., 15, pp. 67-133, 1996.

VUKOBRATOVIC, M., BOROVAC, B., Zero-Moment Point-thirty-five years of its life, Int. J. Hum. Robot., 1, pp. 157-173, 2004.

GRIZZLE, J.W., CHEVALLEREAU, R.W. SINNET, A.D. AMES, A.D., Models, feedback control, and open problems of 3D bipedal robot walking, Automatica, 50, pp. 1955-1988, 2014.

GOSWAMI, A., Postural stability of biped robots and the foot-rotation indicator (FRI) point, Int. J. Robot. Res.,18, pp. 523-533, 1999.

MCGEER, T., Passive dynamic walking, Int. J. Robot. Res., 9, pp. 62-82, 1990.

TARNITA, D., CATANA, M., TARNITA, D.N., Nonlinear analysis of normal human gait for different activities with application to bipedal locomotion, RJTS Appl Mech, 58, 1-2, pp. 177-192, 2013.

COLLINS, S.H., WISSE, M., RUINA, A., A three-dimensional passive dynamic walking robot with two legs and knees, Int. J. Robot. Res., 20, pp. 607-615, 2001.

TARNITA, D., TARNITA, D.N., CATANA, M., Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee, Romanian Journal of Morphology and embryology, 54, 2, pp. 309-313, 2013.

CHAU, T., A Review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods, Gait and Posture, 13(1), 49-66, 2001.

SHIRIAEV, A.S., FREIDOVICH, L.B., SPONG, M.W., Controlled invariants and trajectory planning for underactuated mechanical systems, IEEE Trans. Automat. Control, 59, pp. 2555-2561, 2014.

BESSONNET, G., CHESSE, S., SARDAIN, P., Optimal gait synthesis of a seven-link planar biped, Int. J. Robot. Res., 23, pp. 1059-1073, 2004.

BESSONNET, G., CHESSE, S., SARDAIN, P., A parametric optimization approach to walking pattern synthesis, Int. J. Robot. Res., 24, pp. 523-536, 2005.

KOOLEN, T., T. DE BOER, REBULA, J., GOSWAMI, A., PRATT, J., Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models, Int. J. Robot. Res., 31, pp. 1094-1113, 2012.

GRIZZLE, J.W., ABBA, G., PLESTAN, F., Asymptotically stable walking for biped robots: Analysis via systems with impulse effects, IEEE Trans. Automat. Control, 46, pp. 51-64, 2001.

BUSS, B.G., HAMED, K.A., GRIFFIN, B.A., GRIZZLE, J.W., Experimental results for 3D bipedal robot walking based on systematic optimization of virtual constraints, In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, pp. 4785-4792, 2016.

MOUAZ AL KOUZBARY, NOOR AZUAN ABU OSMAN, AHMAD KHAIRI ABDUL WAHAB, Sensorless control system for assistive robotic ankle-foot, Int. J. of Advances Robotic Systems, pp. 1-9, 2018.

MOSNEGUTU, V., Contributii privind dinamica sistemelor cu frecare cu aplicatii in controlul vibratiilor si al amortizarii, Teza de doctorat, Institutul de Mecanica Solidelor al Academiei Romane, 2008.

MOSNEGUTU, V., CHIROIU, V., Introducere in modelarea matematica a articulatiei genunchiului, Editura Academiei, 2013.



Most read articles by the same author(s)

1 2 3 > >>