On the design and validation of a parallel robot for lower limb rehabilitation


  • Iuliu Nadas CESTER, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania. National Institute for Research and Development of Isotopic and Molecular Technologies; Cluj-Napoca, Romania
  • Paul Tucan CESTER, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
  • Bogdan Gherman CESTER, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
  • Alexandru Banica CESTER, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
  • Vasile Rednic National Institute for Research and Development of Isotopic and Molecular Technologies; Cluj-Napoca, Romania
  • Giuseppe Carbone DIMEG, University of Calabria, 87036 Cosenza, Italy
  • Doina Pisla CESTER, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania


parallel robot, robotic rehabilitation for lower limb, robot design, robotic system testing, finite element analysis


This paper focuses on the enhancement of the design of a parallel robotic system for lower limb rehabilitation for bedridden patients following a stroke. The robotic system consists of two parallel robotic modules, each one targeting specific patient’s joints, namely the hip-knee module and the ankle module. A FEA has been performed on the main elements of the robot to identify the most suitable profile to be used within the final design of the mechanism. An evaluation of the robotic system's user acceptability was also undertaken within laboratory tests conducted with healthy subjects to determine the overall level of satisfaction regarding the robot's performance.


FEIGIN, V., STARK, B., JOHNSON, C., et al., Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019, Lancet Neurol., 20, 10, pp. 795-820, 2021, doi:10.1016/S1474-4422(21)00252-02.

SMITH, D., S., GOLDENBERG, E., ASHBURN A., et al., Remedial therapy after stroke: a randomised controlled trial, The British Medical Journal, 282, 6263, pp. 517-520, 1981.

DAM, M., TONIN, P., CASSON, S., ERMANI, M., PIZZOLATO, G., IAIA, V., BATTISTIN, L., The effects of long-term rehabilitation therapy on poststroke hemiplegic patients, Stroke, 24, 8, pp. 1186-1191, 1993, doi: 10.1161/01.str.24.8.1186. PMID: 8342195.

CLARK, W., E., SIVAN, M., O’CONNOR, R. J., Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review, Journal of Rehabilitation and Assistive Technologies Engineering, 2019, doi:10.1177/2055668319863557.

MENDIS, S., Stroke Disability and Rehabilitation of Stroke: World Health Organization Perspective, International Journal of Stroke, 8, 1, pp. 3-4, 2013, doi:10.1111/j.1747-4949.2012.00969.x.

FURLAN, L., CONFORTO, A., B., COHEN, L., G., STERR, A., Upper limb immobilisation: a neural plasticity model with relevance to poststroke motor rehabilitation, Neural plasticity, 2016.

BENJAMIN, E., MUNTNER, P., ALONSO, A., et al., Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association, Circulation, 139, 10, e56-e528, 2019, doi:10.1161/CIR.0000000000000659.

DÍAZ, I., GIL, J.J., SÁNCHEZ E., Lower-Limb Robotic Rehabilitation: Literature Review and Challenges, Journal of Robotics, 2011, Article ID 759764, 2011, https://doi.org/10.1155/2011/759764.

GUO, B., HAN, J., LI, X., FANG, T., YOU, A., Research and Design of a New Horizontal Lower Limb Rehabilitation Training Robot, International Journal of Advanced Robotic Systems, 2016, doi:10.5772/62032.

SALE, P., FRANCESCHINI, M., WALDNER, A., HESSE, S., Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury, Eur. J Phys. Rehabil. Med., 48, pp. 111-121, 2012.

ZHANG, X., YUE, Z., JING, W., Robotics in Lower-Limb Rehabilitation after Stroke, Behavioural Neurology, 2017, Article ID 3731802, 2017, https://doi.org/10.1155/2017/3731802.

BANALA, S., K., KIM, S., K., AGRAWAL, S., K., and SCHOLZ, J., P., Robot assisted gait training with active leg exoskeleton (ALEX), IEEE Trans Neural Syst. Rehabil. Eng., 17, 1, pp. 2-8, 2009, doi: 10.1109/TNSRE.2008.2008280.

LOKOMAT® - Hocoma, https://www.hocoma.com/solutions/lokomat/ (accessed Nov. 29, 2021).

BANALA, S., K., AGRAWAL, S., K., SCHOLZ, J., P., Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients, in IEEE 10th International Conference on Rehabilitation Robotics, pp. 401-407, 2007, doi: 10.1109/ICORR.2007.4428456.

HESSE, S., WALDNER, A., TOMELLERI, C., Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients, J. Neuroeng Rehabil, 7, 30, 2010, doi: 10.1186/1743-0003-7-30, PMID: 20584307; PMCID: PMC2914004.

Gait Trai ner GT I | Neurorehabdirectory.com, https://www.neurorehabdirectory.com/rehab-products/gait-trainer-gt-i/ (accessed Nov. 29, 2021).

CHEN, G., QI, P., GUO, Z., and YU, H., Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation, Mechanism and Machine Theory, 103, pp. 51-64, 2016, doi: 10.1016/j.mechmachtheory.2016.04.012.

SANKAI, Y., HAL, Hybrid Assistive Limb Based on Cybernics, in Robotics Research, Berlin, Heidelberg, pp. 25-34, 2011, doi: 10.1007/978-3-642-14743-2_3.

PESHKIN, M., BROWN, D., SANTOS-MUNNE, J., et al., KineAssist: a robotic overground gait and balance training device, in 9th International Conference on Rehabilitation Robotics, ICORR 2005, pp. 241-246, 2005, doi:10.1109/ICORR.2005.1501094.

SCHMITT, C., MÉTRAILLER, P., Eds., The Motion MakerTM: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation, 8th Vienna International Workshop on Functional Electrical Stimulation, 2004.

BOURI, M., Le GALL, B., CLAVEL, R., A new concept of parallel robot for rehabilitation and fitness: The Lambda, in IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2503-2508, 2009, doi: 10.1109/ROBIO.2009.5420481.

HOMMA, K., FUKUDA, O., SUGAWARA, J., NAGATA, Y., and M. USUBA, A wire-driven leg rehabilitation system: development of a 4-DOF experimental system, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2, pp. 908-913, 2003, doi: 10.1109/AIM.2003.1225463.

VAIDA, C., BIRLESCU, I., PISLA, A., CARBONE, G., PLITEA, N., ULINICI, I., GHERMAN, B., PUSKAS F., TUCAN, P., PISLA, D., RAISE - An Innovative Parallel Robotic System for Lower Limb Rehabilitation, in New Trends in Medical and Service Robotics, Cham, pp. 293-302, 2019, doi: 10.1007/978-3-030-00329-6_33.

TUCAN, P., VAIDA, C., CARBONE, G., PISLA, A., PUSKAS, F., GHERMAN, B., PISLA, D., A kinematic model and dynamic simulation of a parallel robotic structure for lower limb rehabilitation, in Advances in Mechanism and Machine Science, Cham, pp. 2751-2760, 2019, doi: 10.1007/978-3-030-20131-9_272.

VAIDA, C., BIRLESCU, I., PISLA, A., ULINICI, I., TARNITA, D., CARBONE, G., PISLA, D., Systematic Design of a Parallel Robotic System for Lower Limb Rehabilitation, IEEE Access, 8, pp. 34522-34537, 2020, doi: 10.1109/ACCESS.2020.2974295.

GHERMAN, B.; BIRLESCU, I.; PUSKAS, F.; PISLA, A.; CARBONE, G.; TUCAN, P.; BANICA, A.; PISLA, D., A Kinematic Characterization of a Parallel Robotic System for Lower Limb Rehabilitation, in Mechanisms and Machine Science, Corves, B., Wenger, P., Hüsing, M., Eds.; EuCoMeS 2018; Springer: Cham, Switzerland, 59, 2019, doi:10.1007/978-3-319-98020-1_4.

GHERMAN, B.; BIRLESCU, I.; TUCAN, P.; VAIDA, C.; PISLA, A.; PISLA, D, Modelling and simulation of a robotic system for lower limb rehabilitation, Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5B, 42nd Mechanisms and Robotics Conference (V05BT07A083), Quebec City, QC, Canada, 26-29 August 2018; ASME: New York, NY, USA, doi:10.1115/detc2018-85872.

NADAS, I., GHERMAN, B., BIRLESCU, I., BOGATEANU, R., BANICA, A., CARBONE, G., PISLA, D., Dynamic balancing of RECOVER robotic system, IOP Conf. Ser. Mater. Sci. Eng., 997, 12083, 2020.

GHERMAN, B., BIRLESCU, I., PLITEA, N., CARBONE, G., TARNITA, D., PISLA, D., On the Singularity-Free Workspace of a Parallel Robot for Lower-Limb Rehabilitation, Proceedings of The Romanian Academy, Series A, 20, 4, pp. 383-391, 2019.

GHERMAN, B., NADAS, I., TUCAN, P., CARBONE, G., PISLA, D., Design and Simulation of Gait Rehabilitation Parallel Robotic System, in New Advances in Mechanisms, Mechanical Transmissions and Robotics, Lovasz, E.C., Maniu, I., Doroftei, I., Ivanescu, M., Gruescu, C.M., Eds.; MTM&Robotics, Mechanisms and Machine Science; Springer: Cham, Switzerland, 88, 2020, doi:10.1007/978-3-030-60076-1_17.

NADAS, I., GHERMAN, B., ALBERT, S., SURDUCAN, V., POP, N., CARBONE, G., BANICA, A., PISLA, D., Design and control of Recover Rehabilitation Parallel Robot, Proceeding of the 1st International Conference on Advanced Research in Engineering, CARE 2020, Tokyo, Japan, 10-30 November 2020, Tarnita, D., Dumitru, N., Paraschiv, G., Dumitru, I., Eds.; Universitaria Craiova: Craiova, Romaniavol, 2020, pp. 3-10, ISSN 2734-7400, 2020.

NADAS, I., GHERMAN, B., ALBERT, S., SURDUCAN, V., POP, N., CARBONE, G., BANICA, A., PISLA, D., Innovative Development of a Parallel Robotic System for Lower Limb Rehabilitation, Series: Applied Mathematics, Mechanics, and Engineering; Acta Technica Napocensis: Cluj-Napoca, Romaniavol, 2021, 64, pp. S1-S2; ISSN 2393-2988. Available online: https://atna-mam.utcluj.ro/index.php/Acta/article/view/1537 (accessed on 15 September 2021).

PISLA D., L., GHERMAN, B., NADAS, I., A., POP, N., M., CRACIUN, C., F., TUCAN, P., G., M., VAIDA, L., C., CARBONE, G., BIRLESCU, I., PLITEA, N., Parallel robot for medical recovery of lower limbs, has prismatic couplings that performs translation movements by some sliding elements, which, allows flexion/dorsiflexion movement of plantar support, Patent numbers: RO133815-A0; RO133815-A3.

PISLA D., NADAS I., TUCAN P., ALBERT S., CARBONE G., ANTAL T., BANICA A., GHERMAN B., Development of a Control System and Functional Validation of a Parallel Robot for Lower Limb Rehabilitation, Actuators, 10, 10, 277, 2021, https://doi.org/10.3390/act10100277.

CONTINI, R., DRILLIS, R., J., BLUESTEIN, M., Determination of body segment parameters, Hum. Factors., 5, pp. 493-504, 1963, doi: 10.1177/001872086300500508. PMID: 14101572.

https://www.mathworks.com/discovery/monte-carlo-simulation.(accessed Dec. 15, 2021)

ExRx.net: Body Segment Data, https://exrx.net/Kinesiology/Segments (accessed Dec. 01, 2021).

VENKATESH, V., Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model, Information Systems Research,11, 4, pp. 342-365, 2000.

DILLON, A., User acceptance of information technology:theories and models, Encyclopedia of Human Factors and Ergonomics, Taylor and Francis, London, 2001.

LOUHO, R., KALLIOJA, M., OITTINEN, P., Factors affecting the use of hybrid media applications, Graphic Arts Finland., 35, 3, pp. 11-21, 2006.

DAVIS, F., D., User Acceptance of Information Technology: System Characteristics, User Perceptions and Behavioral Impacts, Int. J. Man Mach. Stud., 38, pp. 475-487, 1993.

MAZZOLENI, S., TURCHETTI, G., PALLA, I., POSTERARO, F., DARIO, P., Acceptability of robotic technology in neuro-rehabilitation: preliminary results on chronic stroke patients, Comput Methods Programs Biomed., 116, 2, pp. 116-122, doi: 10.1016/j.cmpb.2013.12.017, Epub 2014 Jan 3, PMID: 24461799, 2014.