A virtual internal bond model for hysteretic media

Authors

  • Pier Paolo Delsanto
  • Vetunia Chiroiu
  • Tudor Sireteanu
  • Ligia Munteanu
  • Marius Florinel Ionescu

Keywords:

hysteretic media, virtual internal bond model, hyperelasticity, LennardJones potential

Abstract

In this paper, the properties of the hysteretic media are investigated via the virtual internal bond model (VIB) derived from the hyperelasticity with the integration of the 6–12 Lennard-Jones atomic interacting potential.

References

GAO, H., KLEIN, P., A quasicontinuum cohesive model with randomized internal cohesive bounds, Preprint, Division of Mechanics and Computation, Stanford University, March 1997.

GAO, H., KLEIN, P., Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids, 46, pp. 187–218, 1998.

LIN, P., A nonlinear wave equation of mixed type for fracture dynamics, Research Report No. 777, Department of Mathematics, The National University of Singapore, August 2000.

LIN, P., SHU, C-W. Numerical solution of a virtual internal bond model for material fracture, Physica D: Nonlinear Phenomena, 167, 1-2, pp. 101–121, 2002.

BORN, M., HUANG, K., Dynamical theory of the crystal lattices, Oxford University Press, Oxford, 1954.

MILSTEIN, F., Review: theoretical elastic behaviour at large strains, J. Math. Sci., 15, pp. 1071–1084, 1980.

OGDEN, R.W., Non-Linear Elastic Deformations, Dover, 1984.

VAN DEN ABEELE, K., CARMELIET, J., TENCATE, J., JOHNSON, P., Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage. Part I, Res. Nondestr. Eval., 12, pp. 17–30, 2000.

VAN DEN ABEELE, K., CARMELIET, J., TENCATE, J., JOHNSON, P., Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage. Part II, Res. Nondestr. Eval., 12, pp. 31–42, 2000.

DELSANTO, P.P., GLIOZZI, A.S., HIRSEKORN, M., NOBILI, M., A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media, Ultrasonics, 44, pp. 279–286, 2006.

DELSANTO, P.P., SCALERANDI, M., A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces, J. Acoust. Soc. Am., 104, 5, 1998.

HOLCOMB, D., Memory, relaxation and microfacturing in dilatant rock, J. Geophys. Res., 86, pp. 6235–6245, 1981.

MCCALL, K., GUYER, R., A new theoretical paradigm to describe hysteresis, discrete memory and nonlinear elastic wave propagation in rock, Nonlinear Proc. Geophys, 3, p.89, 1996.

PREISACH, F., Uber die magnetische nachwirkung, Zeitschrift fur Physik, 94, pp. 277–302, 1935.

MAYERGOYZ, I., Mathematical Models of Hysteresis, Springer, New York, 1991.

RIVLIN, R.S., Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory, Phil.Trans.Roy.Soc., A241, 835, pp. 379–397, 1948.

MOONEY, M., A Theory of Large Elastic Deformation, J.Appl.Phys, 11, 9, pp. 582–592, 1940.

ERINGEN, A.C., Mechanics of Continua, John Wiley and Sons, New York, 1967.

ERINGEN, A.C., Nonlinear theory of Continuous Media, McGraw-Hill, New York, 1962.

MALVERN, L.W., Introduction to the Mechanics of a Continuum Medium, Prentice-Hall, Englewood Cliffs, N.J., 1969.

Published

2011-01-15

Most read articles by the same author(s)

1 2 3 4 > >>