A numerical asymptotic formulation for the post-buckling analysis of structures in case of coupled instability


  • Giovanni Garcea
  • Antonio Bilotta
  • Antonio Madeo
  • Giuseppe Zagari
  • Raffaele Casciaro


Koiter asymptotic analysis, coupled instability, FE method


The analysis of slender structures, characterized by complex buckling and postbuckling phenomena and by a strong imperfection sensitivity, is heavily penalized by the lack of adequate computational tools. Standard incremental iterative approaches are computationally expensive and unaffordable, while FEM implementation of the Koiter method is a convenient alternative. The analysis is very fast, its computational burden is of the same order as a linearized buckling load evaluation and the simulation of different imperfections costs only a fraction of that needed to characterize the perfect structure. The main objective of the present work is to show that finite element implementations of the Koiter method can be both accurate and reliable and to highlight the aspects that require further investigation.


Arbocz, J., Hol, J. M. A. M., Koiter’s stability theory in a computer-aided engineering (CAE) environment, Int. J. Solids Struct, 26, pp. 945–973, 1990.

Barbero, E. J., Godoy, L. A., Raftoyiannis I. G., Finite elements for three-mode interaction in buckling analysis, Int. J. Numer. Meth. Eng, 39, pp. 469–488, 1996.

Boutyour, E. H., Zahrouni, H., Potier-Ferry, M., Boudi, M., Asymptotic-numerical method for buckling analysis of shell structures with large rotations, Journal of Computational and Applied Mathematics, 168, 1–2, pp. 77–85, 2004

Brezzi, F., Cornalba, M., Di Carlo, A., How to get around a simple quadratic fold, Numer. Math, 48, pp. 417–427, 1986.

Budiansky, B., Theory of buckling and post–buckling of elastic structures, Advances in Applied Mechanics, 14, Academic Press, New York, 1974 .

Casciaro R., Computational asymptotic post-buckling analysis of slender elastic structures, CISM Courses and Lectures No. 470, SpringerWien, New York, 2005.

Casciaro, R., Garcea, G., Attanasio, G., Giordano, F., Perturbation approach to elastic postbuckling analysis, Comput. Struct, 66, 585–595, 1998.

Casciaro R., Mancusi G., Imperfection sensitivity due to coupled local instability: a nonconvex QP solution algorithm, Int. J. Numer. Meth. Eng, 67, pp. 815–840, 2006.

Casciaro R., Salerno G., Lanzo A. D., Finite Element Asymptotic Analysis of Slender Elastic Structures: a Simple Approach, Int. J. Numer. Meth. Eng, 35, pp. 1397–1426, 1992.

Chen, H., Virgin, L. N., Finite element analysis of post-buckling dynamics in plates, Part I: An asymptotic approach, Int. J. Solids Struct, 43, pp. 3983–4007, 2006.

Dubina, D., The ECBL approach for interactive buckling of thin-walled steel members, Steel and Composite Structures, 1, 1, pp. 7596, 2001.

Dubina, D., Ungureanu, V., Instability mode interaction: From Van Der Neut model to ECBL approach, Thin-Walled Structures, Article in Press, 2013.

Dubina, D., Ungureanu, V., Effect of imperfections on numerical simulation of instability behaviour of cold-formed steel members, Thin-Walled Structures, 40, 3, pp. 239–262, 2002.

Flores, F. G., Godoy, L. A., Elastic postbuckling analysis via finite element and perturbation techniques. Part 1: Formulation, Int. J. Numer. Meth. Eng., 33, pp. 1775–1794, 1992.

Garcea, G., Mixed formulation in Koiter analysis of thin-walled beam, Comput. Methods Appl. Mech. Eng, 190, pp. 3369–3399, 2001.

Garcea, G., Formica, G., Casciaro, R., A numerical analysis of infinitesimal mechanisms, Int. J. Numer. Meth. Eng., 62, pp. 979–1012, 2005.

Garcea, G., Madeo, A., Casciaro, R., The implicit corotational method and its use in the derivation of nonlinear structural models for beams and plates, J. Mech. Mater. Struct, 7, 6, pp. 509–538, 2012.

Garcea, G., Madeo, A., Casciaro, R., Nonlinear FEM analysis for beams and plate assemblages based on the Implicit Corotational Method, J. Mech. Mater. Struct., 7,6, pp. 539–574, 2012.

Garcea, G., Madeo, A., Zagari, G., Casciaro, R., Asymptotic post-buckling FEM analysis using a corotational formulation, Int. J. Solids Struct., 46, 2, pp. 523–532, 2009.

Garcea, G., Salerno, G., Casciaro, R., Extrapolation locking and its sanitization in Koiter asymptotic analysis, Comput. Methods Appl. Mech. Eng., 180, 1–2, pp. 137–167, 1999.

Garcea, G., Trunfio, G. A., Casciaro, R., Mixed formulation and locking in path-following nonlinear analysis, Comput. Methods Appl. Mech. Eng., 165, 1–4, pp. 247–272, 1998.

Garcea, G., G.A. Trunfio, Casciaro, R., Path-following analysis of thin-walled structures and comparison with asymptotic post-critical solutions, ComputInt. J. Numer. Meth. Eng., 55, pp. 73–100, 2002.

Godoy, L. A., Banchio, E. G., Singular perturbations for sensitivity analysis in symmetric bifurcation buckling, Int. J. Numer. Meth. Eng., 52, pp. 1465–1485, 2001.

Goltermann, P., Møllmann, H., Interactive buckling in thin-walled beams – I. Theory, Int. J. Solids Struct., 25, pp. 715–749, 1989.

Ho, D., The influence of imperfections on systems with coincident buckling loads, Int. J. Non-Linear Mech., 7, pp. 311–321, 1972.

Ho, D., Buckling load of non-linear systems with multiple eigenvalues, Int. J. Solids Struct., 10, pp. 1315–1330, 1974.

Liang, K., Abdalla, M., G¨urdal, Z., A Koiter-Newton approach for nonlinear structural analysis, Int. J. Numer. Meth. Eng., 96, 12, pp. 763–786, 2013.

Koiter, W. T., On the stability of elastic equilibrium, Thesis, Delft, 1945. English transl. NASA TT-F10, 883, 1967 and AFFDL-TR70-25, 1970.