Calculus of the torsor of inertia forces for a rigid solid body in general motion

Authors

  • Vladimir Dragos Tataru “Valahia” University of Targoviste, Romania
  • Mircea Bogdan Tataru University of Oradea, Romania

Keywords:

torque, inertia forces, dynamic study

Abstract

The calculus of the torsor of the inertia forces for a rigid solid body in general motion is a very important matter for its next dynamic study. In other words if we aim to perform the dynamic survey of a rigid solid body we must determine first the torque of its inertia forces about an arbitrary point. For this reason the present paper deals with the calculus of its elements: the resultant force vector and the resultant moment vector.

References

VÂLCOVICI, V., BALAN, St., VOINEA, R., Mecanica Teoretica, Ed. Tehnica, Bucharest, 1968.

VOINEA, R., VOICULESCU, D., CEAUSU, V., Mecanica, Ed. Didactica si Pedagogica, Bucharest, 1983, pp. 351–355.

STAICU, St., Aplicatii al calculului matriceal în mecanica solidelor, Ed. Academiei R.S.R., Bucharest, 1983.

ANGELES, J., LEE, S.K., The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement, Journal of Applied Mechanics, 55, pp. 243–244, 1988.

PAPASTRAVIDIS, J.G., On the transitivity equations of rigid-body dynamics, Journal of Applied Mechanics, 59, pp. 955–962, 1992.

BLAJER, W., A projection method approach to constrained dynamic analysis, Journal of Applied Mechanics, 59, pp. 643–649, 1992.

BLAJER, W., BESTLE, D., SCHIEHLEN, W., An orthogonal matrix formulation for constrained multibody systems, Journal of Mechanical Design, 116, pp. 423–428, 1994.

MUSAT, S.D., Ecuatii de tip Euler pentru solidul rigid deduse din ecuatiile lui Lagrange, XIXth National Conference on Solid Mechanics, vol. 2, pp. 219–226, Târgoviste, Romania, 1995.

STAICU, St., Mecanica Teoretica, Ed. Didactica si Pedagogica Bucuresti, Bucharest, 1998.

BAUSIC, F., Mecanica Teoretica. Dinamica. Mecanica Analitica, Ed. Conspress, Bucharest, 2004.

BRATU, P., Mecanica Teoretica, Edit. Impuls, Bucharest, 2006.

STAICU, St., Dynamics of the spherical 3-UPS/S parallel mechanism with prismatic actuators, Multibody System Dynamics, 22, 2, pp. 115–132, 2009.

KAMMAN, J.W., HOUSTON, R.L., Dynamics of constrained multibody systems, ASME Journal of Applied Mechanics, 51, pp. 899–903, 1984.

PAPASTAVRIDIS, J.P., Maggi’s equations of motion and the determination of constrained reactions, AIAA Journal of Guidance, Control and Dynamics, 13, 2, pp. 213–220, 1990.

NIKRAVES, P.E., Systematic reduction of multibody equations of motion to a minimal set, International Journal of Non-Linear Mechanics, 25, 2-3, pp. 143–151, 1990.

BLAJER, W., On the determination of joint reactions in multibody mechanisms, Journal of Mechanical Design, 126, 2, pp. 341–350, 2004.

HOUSTON, R.L., Methods of analysis of constrained multibody systems, Mechanics of Structures and Machines, 17, 2, pp. 135–143, 1989.

Published

2018-06-01