Ricci soliton equation with application to a coupled pendula
Keywords:
Ricci soliton, pendulum, cnoidal theoryAbstract
The Ricci equation and the soliton solutions are obtained in this paper for two coupled pendula in order to optimise its locomotion and structure. The robot is swinging repeatedly like a rope with successive movement steps along a mobile support. The cnoidal theory and a genetic algorithm are used to solve the problem via the Ricci solitons and the pseudospherical reduction of the rheological Zener equations. The Bäcklund transform is applied to Ricci equation to generate pseudo-spherical surfaces.
References
ABLOWITZ, M. J., SEGUR, H., Solitons and the inverse scattering transforms, SIAM, Philadelphia, 1981.
ABLOWITZ, M. J., RAMANI, A., SEGUR, H., A connection between nonlinear evolution equations and ordinary differential equations of P-type I, II, J. Math. Phys., 21, 4, pp. 715-721, pp. 1006-1015, 1980.
ABRAMOWITZ, M., STEGUN, I. A. (eds.), Handbook of mathematical functions, U. S. Dept. of Commerce, 1984.
ACHENBACH, J. D., Wave propagation in elastic solids, North-Holland Publishing Company, Amsterdam, 1973.
ADAM, D., KOPF, F., Theoretical Analysis of Dynamically Loaded Soils, European Workshop:Compaction of Soils and Granular Materials; ETC11 of ISSMGE: Paris, 2000.
BAIRD, P., DANIELO, L., Three-dimensional Ricci solitons which project to surfaces, J .fur die reine and engewandte Mathematik Walter de Gruyter, Berlin, pp. 65-91, 2007.
CHEN, B.-Y., A survey on Ricci solitons on Riemannian submanifolds, Contemporary Mathematics, 674, 2016.
BALA, N., Symmetry groups and Lagrangians associated to Tzitzeica surfaces, Report DG/9910138, 1999.
BLASCHKE, W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie, II, Affine Differentialgeometrie, Grundlehren der math. Wissenschaften 7, Springer, Berlin, 1923.
BRATU, P., STUPARU, A., POPA, S., IACOB, N., VOICU, O., The assessment of the dynamic response toseismic excitation for constructions equipped with base isolation systems according to the NewtonVoigt-Kelvin model, Acta Tech. Napoc. Ser. Appl. Math. Eng., 60, 4, pp. 459-464, 2017.
BRATU, P., STUPARU, A., POPA, S., IACOB, N.. VOICU, O., IACOB, N., SPANU, G., The dynamic isolation performances analysis of the vibrating equipment with elastic links to a fixed base, Acta Tech.Napoc. Ser. Appl. Math. Eng., 61, 1, pp. 23-28, 2018.
CHIROIU, C., DELSANTO, P. P., SCALERANDI, M., CHIROIU, V., SIRETEANU, T., Subharmonic generation in piezoelectrics with Cantor-like structure, J. of Physics D: Applied Physics, 34, 3, pp. 1579-1586, 2001.
CHIROIU, C., MUNTEANU, L., CHIROIU, V., DELSANTO, P. P., SCALERANDI, M., A genetic algorithm for determining the elastic constants of a monoclinic crystal, Inverse Problems, Inst. Phys. Publ., 16, 1, pp. 121-132, 2000.
CHIROIU, V., CHIROIU, C., Inverse Problems in Mechanics, Publishing House of the Romanian Academy, Bucharest, 2003.
ROGERS, C., SCHIEF, W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Univ. Press, 2002.
ROGERS, C., SCHIEF, W. K., The classical Bäcklund transformation and integrable discretisation of characteristic equations, Phys. Letters A, 232, pp. 217-223, 1997.
TODA, M. WADATI, M., A soliton and two solitons in an exponential lattice and related equations, J.of the Phys. Soc. of Japan, 34, pp. 18-25, 1973.
TZITZEICA, G., Sur une nouvelle classe des surfaces, C. R. Acad. Sci., 1910.
TZITZEICA, G., Géométrie projective différentielle des réseaux, Editura Cultura Nationala, Bucharest and Gauthier-Villars, Paris, 1924.
CHIROIU, V., CHIROIU, C., BADEA, T., RUFFINO, E., A nonlinear system with essential energy influx: the human cardiovascular system, Proc. of Romanian Acad., Series A: Mathematics, Physics, Technical Sciences, Information Science, 1, 1, pp. 41-45, 2000.
CHIROIU, V., CHIROIU, C., RUGINA, C., DELSANTO, P.P., SCALERANDI, M., Propagation of ultrasonic waves in nonlinear multilayered media, J. of Comp. Acoustics, 9, 4, pp. 1633-1646, 2001.
CHIROIU, V., MUNTEANU, L., CHIROIU, C., DONESCU, St., The motion of a micropolar fluid in inclined open channels, Proc. of the Romanian Acad., Series A: Mathematics, Physics, Technical Sciences, Information Science, 4, 2, pp. 129-135, 2003.
CRASMAREANU, M., Cylindrical Tzitzeica curves imply forced harmonic oscillators, Balkan J. of Geometry and its Applications, 7, pp. 37-42, 2002.
DOBRESCU, C. F., BRAGUTA, E., Optimization of Vibro-Compaction Technological Process Considering Rheological Properties, In Springer Proceedings in Physics, Proceedings of the 14th AVMS Conference, Timisoara, Springer, 198, pp. 287-293, 2017.
DOBRESCU, C. F., Highlighting the Change of the Dynamic Response to Discrete Variation of Soil Stiffness in the Process of Dynamic Compaction with Roller Compactors Based on Linear Rheological Modeling, Appl. Mech. Mater., 801, pp. 242-248, 2015.
DODD, R. K., EILBECK, J. C., GIBBON, J. D., MORRIS, H. C., Solitons and Nonlinear Wave Equations, Academic Press, London, NewYork, 1982.
LEOPA, A., DEBELEAC, C., NASTAC, S., Simulation of Vibration E ects on Ground Produced by Technological Equipments, In Proceedings of the 12th International Multidisciplinary Scientific GeoConference and EXPO-Modern Management of Mine Producing, Geology and Environmental Protection, SGEM 2012, Albena, Bulgaria, 5, pp. 743-750, 2012.
MUNTEANU, L., CHIROIU, V., BRATU, P., On the Ricci soliton equation-Part I. Cnoidal Method, Romanian Journal of Mechanics, 5, 2, pp. pp. 22-42, 2020.
MUNTEANU, L., DONESCU, St., Introduction to Soliton Theory: Applications to Mechanics, Book Series Fundamental Theories of Physics, 143, Kluwer Academic Publishers, Dordrecht, Boston, 2004.
MUSETTE, M., CONTE, R., VERHOEVEN, C., Bäcklund transformation and nonlinear superposition formula of the Kaup-Kupershmidt and Tzitzeica equations, Centre de Recherches Mathematiques CRM Proc. and Lecture Notes, 29, pp. 345-362, 2001.
NAYFEH, A., Perturbation methods, Wiley, NY, 1973.
NETTEL, S., Wave Physics- Oscillations- Solitons- Chaos, Springer-Verlag, 1992.
NEWELL, A. C., Solitons in mathematics and physics, SIAM, Philadelphia, 1985.
OLVER, P. J., Evolution equations possessing infinite symmetries, J. of Math. Phys., 18, 6, pp. 1212-1215, 1977.
OSBORNE, A. R., Soliton physics and the periodic inverse scattering transform, Physica D, 86, pp. 81-89, 1995.
PAINLEVE, P., Leçons sur la théorie analytique des équations differentielles. Leçons de Stockholm, Hermann, 1895, Paris 1897, Reprinted in Oeuvres de Paul Painlevé, vol. 1, editions du CNRS, Paris, 1973.
Published
Issue
Section
Copyright (c) 2023 The Romanian Journal of Technical Sciences. Applied Mechanics.
This work is licensed under a Creative Commons Attribution 4.0 International License.